
Finishing 3.7, 3.8:

The following example will give us an idea of what to expect when solving systems with
damping and forcing. Suppose that

y′′ + 3y′ + 2y = 10 sin(t) y(0) = −1, y′(0) = 1

Then the solution is
y(t) = 4e−t − 2e−2t − 3 cos(t) + sin(t) (1)

The qualitative properties of this solution are:

• The solution may be regarded as the sum of a transient and a steady-state function.

The transient part of the solution is the part that goes to zero as t → ∞, which is the
homogeneous part of the solution. The steady state term is the particular solution.

• The frequency of the steady state solution is the same as the frequency of the forcing.

In this case, both the forcing and steady state solutions are periodic with period 2π. In
contrast to undamped oscillators with periodic forcing, there is no beating.

• The qualitative behavior of the solution (for relatively large t) is insensitive to changes
in the initial conditions.

This may be surprising, but think about which part of the general solution has the
arbitrary constants that are used to solve a general IVP- It is the homogeneous part of
the solution. In this case, the general solution was:

y(t) = C1e
−t + C2e

−2t + yp(t)

so that the steady state solution is the particular part.

These three properties summarize our analysis of these types of system. Now we come to
another key question for these systems: Is it possible to have something akin to resonance in
a forced, damped linear system that has a periodic forcing?

Gain and Lag

The notation below is a bit different than our text, and I think it simplifies the discussion
quite a bit. Consider the DE:

y′′ + cy′ + ω2y = F sin(αt)

(so mass has been set to 1, and we’ll use a sine instead of a cosine for the forcing).
Then the steady state solution is1:

yss(t) =

(
F

(ω2 − α2)2 + α2c2

)((
ω2 − α2

)
sin(αt)− αc cos(αt)

)
1We’ll prove this at the end in the exercises.
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The amplitude of the steady state (written as a single sine) is then2:

A =
F√

(ω2 − α2)2 + α2c2

If we divide the amplitude by the amplitude of the forcing function F , we get what is called
the gain, G:

G =
A

F
=

1√
(ω2 − α2)2 + α2c2

The maximum value for G occurs where the derivative is zero:

dG

dα
= −1

2
((ω2 − α2)2 + α2c2)−3/2(2(ω2 − α2)(−2α) + 2αc2)

Setting that to zero and solving, we get

α =
1

2

√
4ω2 − 2c2

Therefore, the maximum amplitude of the particular solution occurs not at ω anymore, but
at a value close to ω (as long as c is small). FYI, the maximum value of the gain can be
computed:

Gmax =
2

c
√

4ω2 − c2
Discussion: Why is the preceeding computation important? In the real world, we will

not know the natural frequency of a system. However, if we have access to a mechanism
that provides a periodic forcing (like an amplified speaker hooked up to a computer), then by
adjusting the period of the forcing, we can measure the amplitude of the response (the motion
of the object). For example, the object might be a wine glass (or a beaker), and the forcing
is provided by a strongly amplified sound (See the video on the class website).

Example: Let y′′ + 1
10
y′ + 9y = sin(αt) The amplitude of the forcing is F = 1. The gain

is:

G =
1√

(9− α2)2 + 1
100
α2

Using the formulas above, we see that, to maximize the gain (which is basically the amplitude
of the response), we would set

α =
1

2

√
4 · 9− 2

100
=

1

2
=

1

2

√
35.98 ≈ 2.9992

And, using that forcing frequency, we get a maximum amplitude of the response:

Gmax ≈ 3.335

What are the practical implications of what we have just learned?

• “Resonance” occurs for lightly damped systems.

• In the case of a lightly damped system, how might we learn the (approximate) natural
frequency ω of a system? (Assume we can “tune” α and see the response, u(t)).

2We’ll also prove this in the exercises.
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Exercises:

1. Find the particular solution to:

y′′ + cy′ + ω2y = F sin(αt)

Hint: Use the Method of Undetermined Coefficients and then Cramer’s Rule. As you
go through the computations, remember that α, ω and c are fixed parameters (so your
only unknowns are coming from the Undetermined Coefficients).

2. Given that the particular solution (which is the steady state solution in this case) to the
previous problem is:(

F

(ω2 − α2)2 + α2c2

)((
ω2 − α2

)
sin(αt)− αc cos(αt)

)
Find the expression for the amplitude of the steady state, using our earlier formula:

A cos(ωt) +B sin(ωt) = R cos(ωt− δ)

3. Consider the following forced spring-mass system (also known as an oscillator):

y′′ +
1

2
y′ + 4y = sin(αt)

In the previous problem, we showed that the amplitude of the particular solution is
given by:

A =
F√

(ω2 − α2)2 + α2c2

(a) Use the previous formula to find the amplitude of our particular solution in terms
of α:

(b) Determine the value of α for which the amplitude is a maximum.

(c) If the damping was set to zero, what is the (circular) frequency of the resulting
homogeneous solution (which our text calls ω0)?

(d) With the damping back in:

i. Find the transient part of the solution to the ODE:

ii. While the transient part is not itself periodic, we say that it is “quasi-periodic”.
What is the quasi-frequency (which we’ll refer to as µ)?

(e) Verify the approximation in our text that said the following (see pg. 198): By
comparing the quasi-frequency µ with ω0, we find that (in terms of the original
spring-mass equation):

µ

ω0

≈ 1− γ2

8km

(f) Compare the maximizing value of α with the frequency of the undamped homo-
geneous DE and the pseudo frequency of the damped system. What should we
find?

Extra Exercises, Sections 3.7 and 3.8
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