Solutions to the Exercises:

1. Find the particular solution to:

Y + cy + w?y = Fsin(at)

Hint: Use the Method of Undetermined Coefficients and then Cramer’s Rule. As you
go through the computations, remember that o, w and ¢ are fixed parameters (so your
only unknowns are coming from the Undetermined Coefficients).

SOLUTION: Since ¢ # 0, the particular part of the solution will always be
Y, = Acos(at) + Bsin(at)

Substitute this into the DE and solve for A, B. Hint: It is much easier to keep track of
the algebra if you line things up with the cosine and sine:

w2y, = Aw? cos(at) +Bw?  sin(at)

cy, = Bac cos(at) —Aac sin(at)

Y, = —Aa? cos(at) —Ba? sin(at)
Fsin(at) = (A(w* — a?) + Bac) cos(at) +(B(w? —a?) — Aac) sin(at)

From this, we get the system of equations:

A(w? —a?)+ Bac =0
—Aac+ Bw? —a?) =F

Now use Cramer’s Rule to get that

4 F(—ac) F(w? —a?)
- (w2 — a2)2 + a2c2 B = (W2 — a2)2 + a2c2

. Given that the particular solution (which is the steady state solution in this case) to the
previous problem is:

F 2 2 .
((w2 —a?)?+ a2c2> ((«* = a?) sin(at) — accos(at))

Find the expression for the amplitude of the steady state, using our earlier formula:

Acos(wt) + Bsin(wt) = R cos(wt — 0)

SOLUTION: The amplitude is R = v/ A? 4+ B?, which is:

J ( F(—ac) )2 ) < F(w? — a?) )2 _ J F2[(w? — 02)2 + a2
(CU2 _ 0[2)2 + a202 (WZ _ a2)2 + 05202 [(W2 _ a2)2 + O{202]2

This simplifies to:




3. Consider the following forced spring-mass system (also known as an oscillator):

1
Y+ §yl + 4y = sin(at)

In the previous problem, we showed that the amplitude of the particular solution is

given by:
F

\/(w2 — a?)? + a2c?

A:

(a) Use the previous formula to find the amplitude of our particular solution in terms
of a:

SOLUTION: In this example, F'=1, ¢ = % and w = 2. Therefore,
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(b) Determine the value of a for which the amplitude is a maximum.
SOLUTION: Differentiate with respect to v (and set to zero):

dA B 1 oo 2\ —3/2 9 B
%f2-—§(4(4—&)+a) (8(4 — a*)(—20) +2a) =0
Therefore,
—2a[32—8a—1}:0 a=0 o a=d4/o

And we note that this is the same as what you would get from the handout:
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(c) If the damping was set to zero, what is the (circular) frequency of the resulting
homogeneous solution (which our text calls wg)?

SOLUTION: With the damping set to zero, the frequency is 2.
(d) With the damping back in:

i. Find the transient part of the solution to the ODE:
SOLUTION: The roots to the characteristic equation are:

Therefore,

yn(t) = e V4 (Cl cos (32/7 t) + Cy sin <3f t>>



ii. While the transient part is not itself periodic, we say that it is “quasi-periodic”.
What is the quasi-frequency (which we’ll refer to as p)?
SOLUTION: The quasi-period is

2 -4
37

The quasi (circular) frequency is STﬁ ~ 1.98 (Notice it dropped a bit from the
undamped version at 2).

(e) Verify the approximation in our text that said the following (see pg. 198): By
comparing the quasi-frequency p with wy, we find that (in terms of the original

spring-mass equation):
2
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SOLUTION: On the one hand,

0 3WVT7 1

= —— = =0.99215

Wo 4 2

For the approximation,
2
v 1/4 1
1—- =1- =1-—— ~0.992187
8km 8(1)(4) 128

In this case, the approximation is pretty good!

(f) Compare the maximizing value of o with the frequency of the undamped homo-

geneous DE and the pseudo frequency of the damped system. What should we
find?
SOLUTION: The frequency of the undamped system was 2, the frequency of the
damped system was slightly less at 1.98, and the frequency « that maximized
the amplitude of the particular solution to the damped, forced system was o =
\/31/8 ~ 1.9685 These were expected- That is, we did not expect the amplitude
of the damped system to be a maximum exactly at 2, but we did expect it to be
close. And in fact, it is close to the period of the quasi-periodic solution to the
homogeneous equation.



