7. Find the general solution of the given differential equation:

$$y'' + 3y' + 2y = \cos(t)$$

- 8. What is the transient solution? What is the steady state solution? (See section 3.8)
- 9. Pictured below are the graphs of several solutions to the differential equation:

$$y'' + by' + cy = \cos(\omega t)$$

Match the figure to the choice of parameters:

Choice	$\mid b \mid$	c	ω
(A)	5	3	1
(B)	1	3	1
(C)	5	1	3
(D)	1	1	3

Figure 2: Figures for homework problem 2. Match each figure with the appropriate choice of constants.

10. Recall that

$$Real(e^{i\theta}) = cos(\theta)$$
 $Imag(e^{i\theta}) = sin(\theta)$

Show that, given the DE below we can use the ansatz $y_p = Ae^{3ti}$ (the real part),

$$y'' + 4y = 2\cos(3t)$$

and we will get the particular solution,

$$A = -\frac{2}{5}$$
 \Rightarrow $y_p(t) = -\frac{2}{5}\cos(3t)$