
Exam 2 Summary

Notes

The exam will cover material from Section 3.1 to 3.8. I will provide the formula for the system
of equations that we get from Variation of Parameters (you’ll need to know what the variables
mean and what the set up is). I won’t ask you for the cosine sum formula, and you don’t need
to memorize the formulas at the bottom of page 208/top of 209. Do be sure you understand
the big picture- Some sample questions are provided in the review questions.

Structure and Theory (Mostly 3.2)

The goal of the theory was to establish the structure of solutions to the second order DE:

y′′ + p(t)y′ + q(t)y = g(t)

We saw that two functions form a fundamental set of solutions to the homogeneous DE if the
Wronskian is not zero (at the initial value of time).

1. Know the vocabulary: Linear operator, general solution, fundamental set of solutions,
linear combination of a set of functions.

Be sure you can show that a given function is a linear operator, or that you have a
fundamental set of solutions.

2. Know these theorems:

• The Existence and Uniqueness Theorem for y′′ + p(t)y′ + q(t)y = g(t).

• Principle of Superposition.

• Abel’s Theorem.

If y1, y2 are solutions to y′′+p(t)y′+ q(t)y = 0, then the Wronskian is either always
zero or never zero on the interval for which the solutions are valid.

That is because the Wronskian may be computed as:

W (y1, y2)(t) = Ce−
∫
p(t) dt

• The Fundamental Set of Solutions: y′′ + p(t)y′ + q(t)y = 0

We can guarantee that we can always find a fundamental set of solutions. We did
that by appealing to the Existence and Uniqueness Theorem for the following two
initial value problems:

– y1 solves y′′ + p(t)y′ + q(t)y = 0 with y(t0) = 1, y′(t0) = 0

– y2 solves y′′ + p(t)y′ + q(t)y = 0 with y(t0) = 0, y′(t0) = 1

3. The Structure of Solutions to y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y
′(t0) = v0

Given a fundamental set of solutions to the homogeneous equation, y1, y2, then there is
a solution to the initial value problem, written as:

y(t) = C1y1(t) + C2y2(t) + yp(t)
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where yp(t) solves the non-homogeneous equation.

In fact, if we have:

y′′ + p(t)y′ + q(t)y = g1(t) + g2(t) + . . .+ gn(t),

we can solve by splitting the problem up into smaller problems:

• y1, y2 form a fundamental set of solutions to the homogeneous equation.

• yp1 solves y′′ + p(t)y′ + q(t)y = g1(t)

• yp2 solves y′′ + p(t)y′ + q(t)y = g2(t)

and so on..

• ypn solves y′′ + p(t)y′ + q(t)y = gn(t)

and the full solution is:

y(t) = C1y1 + C2y2 + yp1 + yp2 + . . .+ ypn

Finding the Homogeneous Solution

We had two distinct equations to solve-

ay′′ + by′ + cy = 0 or y′′ + p(t)y′ + q(t)y = 0

First we look at the case with constant coefficients, then we look at the more general case.

Constant Coefficients

To solve
ay′′ + by′ + cy = 0

we use the ansatz y = ert. Then we form the associated characteristic equation:

ar2 + br + c = 0 ⇒ r =
−b±

√
b2 − 4ac

2a

so that the solutions depend on the discriminant, b2 − 4ac in the following way:

• b2 − 4ac > 0⇒ two distinct real roots r1, r2. The general solution is:

yh(t) = c1e
r1t + c2e

r2t

If a, b, c > 0 (as in the Spring-Mass model) we can further say that r1, r2 are negative.
We would say that this system is OVERDAMPED.

• b2 − 4ac = 0⇒ one real root r = −b/2a. Then the general solution is:

yh(t) = e−(b/2a)t (C1 + C2t)

If a, b, c > 0 (as in the Spring-Mass model), the exponential term has a negative expo-
nent. In this case (one real root), the system is CRITICALLY DAMPED.
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• b2 − 4ac < 0⇒ two complex conjugate solutions, r = α± iβ. Then the solution is:

yh(t) = eαt (C1 cos(βt) + C2 sin(βt))

If a, b, c > 0, then α = −(b/2a) < 0. In the case of complex roots, the system is said to
the UNDERDAMPED. If α = 0 (this occurs when there is no damping), we get pure
periodic motion, with period 2π/β or circular frequency β.

Solving Another Special Case: Euler Equations

In this case,
t2y′′ + aty′ + by = 0

Use the ansatz y = tr to get the characteristic equation:

r(r − 1) + ar + b = 0 ⇒ r2 + (a− 1)r + b = 0

We have the three cases again:

• The discriminant is positive: r1, r2 are real, distinct. The general solution is

y = C1t
r1 + C2t

r2

• The discriminant is negative: r = α± βi. The two solutions are the real and imaginary
part of y = tr, which is:

y = tα(C1 cos(ln(tβ)) + C2 sin(ln(tβ)))

• The discriminant is zero: One root r. Multiply by ln(t) to get the second function:

y = tr(C1 + C2 ln(t))

Solving the more general case

We had two methods for solving the more general equation:

y′′ + p(t)y′ + q(t)y = 0

but each method relied on already having one solution, y1(t). Given that situation, we can
solve for y2 (so that y1, y2 form a fundamental set), by one of two methods:

• By use of the Wronskian: There are two ways to compute this,

– W (y1, y2) = Ce−
∫
p(t) dt (This is from Abel’s Theorem)

– W (y1, y2) = y1y
′
2 − y2y′1

Therefore, these are equal, and y2 is the unknown: y1y
′
2 − y2y′1 = Ce−

∫
p(t) dt

• Reduction of order, where y2 = v(t)y1(t).
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Finding the particular solution.

Our two methods were: Method of Undetermined Coefficients and Variation of Parameters.

• Method of Undetermined Coefficients

This method is motivated by the observation that, a linear operator of the form L(y) =
ay′′+by′+cy, acting on certain classes of functions, returns the same class. In summary,
the table from the text:

if gi(t) is: The ansatz ypi is:
Pn(t) ts(a0 + a1t+ . . . ant

n)
Pn(t)eαt tseαt(a0 + a1t+ . . .+ ant

n)
Pn(t)eαt sin(µt) or cos(µt) tseαt ((a0 + a1t+ . . .+ ant

n) sin(µt)
+ (b0 + b1t+ . . .+ bnt

n) cos(µt))

The ts term comes from an analysis of the homogeneous part of the solution. That is,
multiply by t or t2 so that no term of the ansatz is included as a term of the homogeneous
solution.

• Variation of Parameters: Given y′′ + p(t)y′ + q(t)y = g(t), with y1, y2 solutions to the
homogeneous equation, we write the ansatz for the particular solution as:

yp = u1y1 + u2y2

From our analysis, we saw that u1, u2 were required to solve the following system of
equations (this will be provided):

u′1y1 + u′2y2 = 0
u′1y

′
1 + u′2y

′
2 = g(t)

From which we get the formulas for u′1 and u′2:

u′1 =
−y2g

W (y1, y2)
u′2 =

y1g

W (y1, y2)

Analysis of the Oscillator Model

Given
mu′′ + γu′ + ku = F (t)

we should be able to determine the constants from a given setup for a spring-mass system.

1. Unforced (F (t) = 0)

(a) No damping: Natural frequency is
√
k/m

(b) With damping: Underdamped, Critically Damped, Overdamped

2. Forced

(a) With no damping, Periodic forcing: Determine when Beating and Resonance occur.

(b) With damping: Identify (or construct) the transient and steady-state part of the
solution. With a small amount of damping, understand that we can get a slightly
different kind of resonance, with the forcing frequency close to the frequency of the
undamped, unforced system.
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Other Material

1. Be familiar with complex numbers, their polar form, and basic operations using complex
numbers.

2. Know and use Euler’s Formula.
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