Complex Integrals and the Laplace Transform

There are a few computations for which the complex exponential is very nice to use. We'll see a few here, but first a couple of Theorems about integrating a complex function:

Theorem:
$$\int e^{(a+bi)t} dt = \frac{1}{(a+bi)} e^{(a+bi)t}$$

The proof is to just work this out using Euler's formula- It's a nice exercise when you have a little time (you'll need to do integration by parts twice).

Theorem: The Laplace Transform of $e^{(a+ib)t}$:

$$\mathcal{L}(e^{(a+ib)t}) = \frac{1}{s - (a+ib)}$$

The proof relies on showing the work in the first exercise.

Theorem: More generally, we can use the previous "trick" on any integral that can be written in complex exponential form. Two examples:

$$\int e^{at} \cos(bt) dt = \text{Real}\left(\frac{1}{a+ib}e^{(a+ib)t}\right)$$
$$\int e^{at} \sin(bt) dt = \text{Imag}\left(\frac{1}{a+ib}e^{(a+ib)t}\right)$$

Worked Example:

1. Use complex exponentials to compute $\int e^{2t} \cos(3t) dt$.

SOLUTION: We note that $e^{2t}\cos(3t) = \text{Real}(e^{(2+3i)t})$, so:

$$\int e^{2t} \cos(3t) dt = \text{Real}\left(\frac{1}{2+3i}e^{(2+3i)t}\right)$$

Simplifying the term inside the parentheses and multiplying out the complex terms:

$$e^{2t} \left(\frac{2-3i}{4+9} \right) (\cos(3t) + i\sin(3t)) =$$

$$e^{2t} \left[\left(\frac{2}{13}\cos(3t) + \frac{3}{13}\sin(3t) \right) + i\left(-\frac{3}{13}\cos(3t) + \frac{2}{13}\sin(3t) \right) \right]$$

Therefore,

$$\int e^{2t} \cos(3t) dt = e^{2t} \left(\frac{2}{13} \cos(3t) + \frac{3}{13} \sin(3t) \right)$$

In fact, we get the other integral for free:

$$\int e^{2t} \sin(3t) dt = e^{2t} \left(\frac{-3}{13} \cos(3t) + \frac{2}{13} \sin(3t) \right)$$

2. Use complex exponentials to compute the Laplace transform of $\cos(at)$: SOLUTION: Note that $\cos(at) = \text{Real}(e^{(at)i})$

$$\mathcal{L}(\cos(at) + i\sin(at)) = \mathcal{L}(e^{ait}) = \frac{1}{s - ai} = \frac{s + ai}{s^2 + a^2}$$

so the real part gives us the Laplace transform of $\cos(at)$ and the imaginary part gives the Laplace transform of $\sin(at)$:

$$\mathcal{L}(\cos(at)) = \frac{s}{s^2 + a^2}$$
 $\mathcal{L}(\sin(at)) = \frac{a}{s^2 + s^2}$

Homework Addition to Section 6.1

1. Use Euler's Formula to show that, if a, b are constants, and s is a parameter, then

$$\lim_{t \to \infty} e^{-(s - (a + ib))t} = 0 \qquad fors > a$$

- 2. Use complex exponentials to compute $\int e^{-2t} \sin(3t) dt$.
- 3. Use complex exponentials to compute the Laplace transform of sin(at).
- 4. Use complex exponentials to compute the Laplace transform of $e^{at} \sin(bt)$ and $e^{at} \cos(bt)$ (compare to exercises 13, 14).
- 5. Prove that e^t goes to infinity faster than any polynomial. You can do that by showing

$$\lim_{t \to \infty} \frac{t^n}{e^t} = 0$$

- 6. (The Racetrack Principle) We can show that f(x) < g(x) for all $x \ge a$ by proving two things: (i) f(a) < g(a), and (ii) f'(x) < g'(x) for all x > a. Use this idea to prove that $\ln(t) < t$ for all $t \ge 1$ (it is true for all t > 0, but we wouldn't be able to use this argument for 0 < t < 1).
- 7. Show that, if f(t) is bounded (that is, there is a constant A so that $|f(t)| \leq A$ for all t), then f is of exponential order (do this by finding K, a and M from the definition).
- 8. If the function is of exponential order, find the K, a and M from the definition. Otherwise, state that it is not of exponential order.

Something that may be handy from algebra: $A = e^{\ln(A)}$.

(a) $\sin(t)$

(d) e^{t^2}

(b) $\tan(t)$

(e) 5^t

(c) t^3

- (f) t^t
- 9. Use complex exponentials to find the Laplace transform of $t \sin(at)$.