
Complex Integrals and the Laplace Transform

There are a few computations for which the complex exponential is very nice to use. We’ll
see a few here, but first a couple of Theorems about integrating a complex function:

Theorem:
∫

e(a+bi)t dt =
1

(a + bi)
e(a+bi)t

The proof is to just work this out using Euler’s formula- It’s a nice exercise when you have
a little time (you’ll need to do integration by parts twice).

Theorem: The Laplace Transform of e(a+ib)t:

L(e(a+ib)t) =
1

s− (a + ib)

The proof relies on showing the work in the first exercise.

Theorem: More generally, we can use the previous “trick” on any integral that can be
written in complex exponential form. Two examples:∫

eat cos(bt) dt = Real
(

1

a + ib
e(a+ib)t

)
∫

eat sin(bt) dt = Imag
(

1

a + ib
e(a+ib)t

)

Worked Example:

1. Use complex exponentials to compute
∫

e2t cos(3t) dt.

SOLUTION: We note that e2t cos(3t) = Real(e(2+3i)t), so:

∫
e2t cos(3t) dt = Real

(
1

2 + 3i
e(2+3i)t

)
Simplifying the term inside the parentheses and multiplying out the complex terms:

e2t
(

2− 3i

4 + 9

)
(cos(3t) + i sin(3t)) =

e2t
[(

2

13
cos(3t) +

3

13
sin(3t)

)
+ i

(
− 3

13
cos(3t) +

2

13
sin(3t)

)]
Therefore, ∫

e2t cos(3t) dt = e2t
(

2

13
cos(3t) +

3

13
sin(3t)

)
In fact, we get the other integral for free:∫

e2t sin(3t) dt = e2t
(−3

13
cos(3t) +

2

13
sin(3t)

)

1



2. Use complex exponentials to compute the Laplace transform of cos(at):

SOLUTION: Note that cos(at) = Real(e(at)i)

L(cos(at) + i sin(at)) = L(eait) =
1

s− ai
=

s + ai

s2 + a2

so the real part gives us the Laplace transform of cos(at) and the imaginary part gives
the Laplace transform of sin(at):

L(cos(at)) =
s

s2 + a2
L(sin(at)) =

a

s2 + s2

Homework Addition to Section 6.1

1. Use Euler’s Formula to show that, if a, b are constants, and s is a parameter, then

lim
t→∞

e−(s−(a+ib))t = 0 fors > a

2. Use complex exponentials to compute
∫

e−2t sin(3t) dt.

3. Use complex exponentials to compute the Laplace transform of sin(at).

4. Use complex exponentials to compute the Laplace transform of eat sin(bt) and eat cos(bt)
(compare to exercises 13, 14).

5. Prove that et goes to infinity faster than any polynomial. You can do that by showing

lim
t→∞

tn

et
= 0

6. (The Racetrack Principle) We can show that f(x) < g(x) for all x ≥ a by proving
two things: (i) f(a) < g(a), and (ii) f ′(x) < g′(x) for all x > a. Use this idea to prove
that ln(t) < t for all t ≥ 1 (it is true for all t > 0, but we wouldn’t be able to use this
argument for 0 < t < 1).

7. Show that, if f(t) is bounded (that is, there is a constant A so that |f(t)| ≤ A for all
t), then f is of exponential order (do this by finding K, a and M from the definition).

8. If the function is of exponential order, find the K, a and M from the definition.
Otherwise, state that it is not of exponential order.

Something that may be handy from algebra: A = eln(A).

(a) sin(t)

(b) tan(t)

(c) t3

(d) et
2

(e) 5t

(f) tt

9. Use complex exponentials to find the Laplace transform of t sin(at).
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