Solutions for Exercise Set 2

1. Verify that the following function solves the given system of DEs:

$$
\mathbf{x}(t)=C_{1} \mathrm{e}^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} \mathrm{e}^{2 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \quad \mathbf{x}^{\prime}=\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right] \mathbf{x}
$$

SOLUTION: First, we compute \mathbf{x}^{\prime}, then we'll compare it to $A \mathbf{x}$:

- For \mathbf{x}^{\prime}, we have

$$
-C_{1} \mathrm{e}^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+2 C_{2} \mathrm{e}^{2 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

- For $A \mathbf{x}$, we have:

$$
\begin{gathered}
C_{1} \mathrm{e}^{-t}\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]+C_{2} \mathrm{e}^{2 t}\left[\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]= \\
C_{1} \mathrm{e}^{-t}\left[\begin{array}{l}
-1 \\
-2
\end{array}\right]+C_{2} \mathrm{e}^{2 t}\left[\begin{array}{l}
4 \\
2
\end{array}\right]=-C_{1} \mathrm{e}^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+2 C_{2} \mathrm{e}^{2 t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{gathered}
$$

2. Convert each of the systems $\mathbf{x}^{\prime}=A \mathbf{x}$ into a single second order differential equation, and solve it using methods from Chapter 3 , if A is given below:
(a) $A=\left[\begin{array}{rr}1 & 2 \\ -5 & -1\end{array}\right]$

SOLUTION: We use the substitution from the first equation, $x_{2}=$ $\frac{1}{2}\left(x_{1}^{\prime}-x_{1}\right)$ into the second equation:

$$
\frac{1}{2}\left(x_{1}^{\prime \prime}-x_{1}^{\prime}\right)=-5 x_{1}-\frac{1}{2}\left(x_{1}^{\prime}-x_{1}\right) \quad \Rightarrow \quad x_{1}^{\prime \prime}+9 x_{1}=0
$$

We have two complex roots to the characteristic equation, $\lambda=$ $\pm 3 i$, so

$$
x_{1}(t)=C_{1} \cos (3 t)+C_{2} \sin (3 t) \quad \Rightarrow \quad x_{2}(t)=\frac{1}{2}\left(x_{1}^{\prime}-x_{1}\right)
$$

which simplifies to

$$
x_{2}(t)=C_{1}\left(-\frac{1}{2} \cos (3 t)-\frac{3}{2} \sin (3 t)\right)+C_{2}\left(\frac{3}{2} \cos (3 t)-\frac{1}{2} \sin (3 t)\right)
$$

(b) $A=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right]$

SOLUTION: Using the first equation to solve for $x_{2}=x_{1}^{\prime}-x_{1}$, substitute into the second to get:

$$
x_{1}^{\prime \prime}-x_{1}^{\prime}=4 x_{1}+x_{1}^{\prime}-x_{1} \quad \Rightarrow \quad x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0
$$

From solving the characteristic equation, $r=-1,3$ so that

$$
x_{1}=C_{1} \mathrm{e}^{3 t}+C_{2} \mathrm{e}^{-t}
$$

Use the substitution to find $x_{2}=x_{1}^{\prime}-x_{1}$:

$$
x_{2}=2 C_{1} \mathrm{e}^{3 t}-2 C_{2} \mathrm{e}^{-t}
$$

(c) $A=\left[\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right]$

SOLUTION: In this case, the second equation is easier to use for the substitution: $x_{1}=x_{2}^{\prime}+x_{2}$, so that the first equation becomes:

$$
x_{1}^{\prime \prime}+x_{2}^{\prime}=3 x_{2}^{\prime}+3 x_{2}-4 x_{2} \quad \Rightarrow \quad x_{2}^{\prime \prime}-2 x_{2}^{\prime}+x_{2}=0
$$

We have a double root: $r=1,1$. Thus,

$$
x_{2}=\mathrm{e}^{t}\left(C_{1}+C_{2} t\right)
$$

Substitute this into the equation for x_{1} :

$$
x_{1}=x_{2}^{\prime}+x_{2}=\mathrm{e}^{t}\left(2 C_{1}+C_{2}(2 t+1)\right)
$$

3. For each matrix, find the eigenvalues and eigenvectors:
(a) $A=\left[\begin{array}{rr}5 & -1 \\ 3 & 1\end{array}\right]$

SOLUTION: The characteristic equation is

$$
\lambda^{2}-6 \lambda+8=0 \quad \Rightarrow \quad \lambda=2,4
$$

For $\lambda=2$, the system $(A-\lambda I) \mathbf{v}=0$ reduces to

$$
3 v_{1}-v_{2}=0 \quad \Rightarrow \quad \begin{aligned}
& v_{1}=v_{1} \\
& v_{2}=3 v_{1}
\end{aligned} \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

For $\lambda=4$, the system $(A-\lambda I) \mathbf{v}=0$ reduces to:

$$
v_{1}-v_{2}=0 \quad \Rightarrow \quad \begin{aligned}
& v_{1}=v_{2} \\
& v_{2}=v_{2}
\end{aligned} \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

(b) $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right]$

SOLUTION: The characteristic equation is

$$
\lambda^{2}-2 \lambda+5=0 \quad \Rightarrow \quad(\lambda-1)^{2}=-4 \quad \Rightarrow \quad \lambda=1 \pm 2 i
$$

For $\lambda=1+2 i$, the system $(A-\lambda I) \mathbf{v}=0$ reduces to

$$
\begin{aligned}
& (2-2 i) v_{1}-2 v_{2}=0 \\
& 4 v_{1}-(2+2 i) v_{2}=0
\end{aligned}
$$

It may not look like these are the same equation, but if you multiply the first equation by $2+2 i$, you will get the second. Therefore, we can just use one of them- Using the first equation, we get:

$$
v_{2}=(1-i) v_{1} \quad \Rightarrow \quad \begin{aligned}
& v_{1}=v_{1} \\
& v_{2}=(1-i) v_{1}
\end{aligned} \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{r}
1 \\
1-i
\end{array}\right]
$$

We don't need to solve for the second eigenvalue and eigenvectorThey are simply the complex conjugates:

$$
\lambda_{2}=1-2 i \quad \mathbf{v}_{2}=\left[\begin{array}{r}
1 \\
1+i
\end{array}\right]
$$

(c) $A=\left[\begin{array}{rr}-2 & 1 \\ 1 & -2\end{array}\right]$

SOLUTION: The characteristic equation is

$$
\lambda^{2}+4 \lambda+3=0 \quad \Rightarrow \quad \lambda=-1,-3
$$

For $\lambda=-1$, the system $(A-\lambda I) \mathbf{v}=0$ reduces to

$$
-v_{1}+v_{2}=0 \quad \Rightarrow \quad \begin{aligned}
& v_{1}=v_{1} \\
& v_{2}=v_{1}
\end{aligned} \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For $\lambda=-3$, the system $(A-\lambda I) \mathbf{v}=0$ reduces to:

$$
v_{1}+v_{2}=0 \quad \Rightarrow \quad \begin{aligned}
& v_{1}=-v_{2} \\
& v_{2}=v_{2}
\end{aligned} \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

(d) $A=\left[\begin{array}{rr}1 & i \\ -i & 1\end{array}\right]$

SOLUTION: The characteristic equation is

$$
\lambda^{2}-2 \lambda=0 \quad \Rightarrow \quad \lambda=0,2
$$

For $\lambda=0$, the system may not look like the same equation, but they are (multiply the first equation by $-i$ to get the second):

$$
v_{1}+i v_{2}=0 \quad \Rightarrow \quad \begin{aligned}
& v_{1}=-i v_{2} \\
& v_{2}=v_{2}
\end{aligned} \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{r}
-i \\
1
\end{array}\right]
$$

For $\lambda=2$, we get:

$$
-v_{1}+i v_{2}=0 \quad \Rightarrow \quad \begin{aligned}
& v_{1}=i v_{2} \\
& v_{2}=v_{2}
\end{aligned} \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{c}
i \\
1
\end{array}\right]
$$

(e) $A=\left[\begin{array}{rr}1 & \sqrt{3} \\ \sqrt{3} & -1\end{array}\right]$

SOLUTION: The characteristic equation is

$$
\lambda^{2}-4=0 \quad \Rightarrow \quad \lambda=2,-2
$$

For $\lambda=2$, the system $(A-\lambda I) \mathbf{v}=0$ reduces to

$$
-v_{1}+\sqrt{3} v_{2}=0 \quad \Rightarrow \quad \begin{aligned}
& v_{1}=\sqrt{3} v_{1} \\
& v_{2}=v_{2}
\end{aligned} \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{r}
\sqrt{3} \\
1
\end{array}\right]
$$

For $\lambda=-2$, taking the second equation, we get

$$
\sqrt{3} v_{1}+v_{2}=0 \quad \Rightarrow \quad \begin{aligned}
& v_{1}=v_{1} \\
& v_{2}=-\sqrt{3} v_{1}
\end{aligned} \quad \Rightarrow \quad \mathbf{v}=\left[\begin{array}{r}
1 \\
-\sqrt{3}
\end{array}\right]
$$

(f) $A=\left[\begin{array}{rrr}3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1\end{array}\right]$

SOLUTION: This one is a little harder to do (only do it if you've had Math 300). However, you should find that the characteristic equation actually factors to:

$$
(\lambda-1)(\lambda-2)(\lambda-3)=0
$$

For $\lambda=1, \mathbf{v}=[-1,0,1]^{T}$. For $\lambda=2$, we get $\mathbf{v}=[-2,1,0]^{T}$ and for $\lambda=3, \mathbf{v}=[0,-1,1]^{T}$.
4. For each system below, find y as a function of x by first writing the differential equation as $d y / d x$.
(a)

$$
\begin{aligned}
x^{\prime} & =-2 x \quad \\
y^{\prime} & =y \quad \frac{d y}{d x}=-\frac{y}{2 x} \\
\frac{1}{y} d y=-\frac{1}{2} \cdot \frac{1}{x} d x & \Rightarrow \quad \ln |y|=-\frac{1}{2} \ln |x|+C \quad \Rightarrow \quad y=\frac{A}{\sqrt{x}}
\end{aligned}
$$

(b)

$$
\begin{gathered}
x^{\prime}=y+x^{3} y \quad \Rightarrow \quad \frac{d y}{d x}=\frac{x^{2}}{y\left(1+x^{3}\right)} \\
y^{\prime}=x^{2} \\
y d y=\frac{x^{2}}{1+x^{2}} d x \quad \Rightarrow \quad \frac{1}{2} y^{2}=\ln \left|1+x^{3}\right|+C
\end{gathered}
$$

(c)

$$
\begin{gathered}
x^{\prime}=-(2 x+3) \quad \Rightarrow \quad \frac{d y}{d x}=\frac{-2(y-1)}{2 x+3} \\
y^{\prime}=2 y-2 \\
\frac{1}{y-1} d y=\frac{-2}{2 x+3} d x \quad \Rightarrow \quad \ln |y-1|=\ln \left(\frac{1}{2 x+3}\right)+C \quad \Rightarrow \\
y=\frac{A}{2 x+3}+1
\end{gathered}
$$

(d)

$$
\begin{aligned}
x^{\prime}=-2 y \quad & \Rightarrow \quad \frac{d y}{d x}=-\frac{x}{y} \quad \Rightarrow \quad y d y=-x d x \\
y^{\prime}= & 2 x \quad \\
& \frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+C_{1} \quad \Rightarrow \quad x^{2}+y^{2}=C_{2}
\end{aligned}
$$

5. For each given λ and \mathbf{v}, find an expression for the vector: $\operatorname{Im}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)$:
(a) $\lambda=3 i, \mathbf{v}=[1-i, 2 i]^{T}$

SOLUTION: This one we'll do in detail, the next one is similar:

$$
(\cos (3 t)+i \sin (3 t))\left[\begin{array}{c}
1-i \\
2 i
\end{array}\right]=\left[\begin{array}{c}
(\cos (3 t)-\sin (3 t))+i(\sin (3 t)-\cos (3 t)) \\
-2 \sin (3 t)+i(2 \cos (3 t))
\end{array}\right]
$$

Therefore, the imaginary part is:

$$
\operatorname{Im}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)=\left[\begin{array}{c}
\sin (3 t)-\cos (3 t) \\
2 \cos (3 t)
\end{array}\right]
$$

(b) $\lambda=1+i, \mathbf{v}=[i, 2]^{T}$

SOLUTION:

$$
\operatorname{Im}\left(\mathrm{e}^{\lambda t} \mathbf{v}\right)=\mathrm{e}^{t}\left[\begin{array}{c}
\cos (t) \\
2 \sin (t)
\end{array}\right]
$$

6. Give the general solution to each system $\mathbf{x}^{\prime}=A \mathbf{x}$ using eigenvalues and eigenvectors, and sketch a phase plane (solutions in the x_{1}, x_{2} plane). Identify the origin as a sink, source or saddle:
(a) $A=\left[\begin{array}{ll}1 & 5 \\ 5 & 1\end{array}\right]$

SOLUTION:

$$
C_{1} \mathrm{e}^{-4 t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]+C_{2} \mathrm{e}^{6 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The origin is a saddle (the two eigenvalues are opposite in sign).
(b) $A=\left[\begin{array}{rr}7 & 2 \\ -4 & 1\end{array}\right]$

SOLUTION:

$$
C_{1} \mathrm{e}^{3 t}\left[\begin{array}{r}
1 \\
-2
\end{array}\right]+C_{2} \mathrm{e}^{5 t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

The origin is a source since both eigenvalues are positive.
(c) $A=\left[\begin{array}{rr}-6 & 10 \\ -2 & 3\end{array}\right]$

SOLUTION:

$$
C_{1} \mathrm{e}^{-t}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+C_{2} \mathrm{e}^{-2 t}\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

The origin is a sink since both eigenvalues are negative.
(d) $A=\left[\begin{array}{rr}8 & 6 \\ -15 & -11\end{array}\right]$

SOLUTION:

$$
C_{1} \mathrm{e}^{-t}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+C_{2} \mathrm{e}^{-2 t}\left[\begin{array}{r}
-3 \\
5
\end{array}\right]
$$

And the origin is again a sink.

