Last time:
e Vocab: ODE, PDE, IVP
o Skills: Be able to verify that ¢(t) is a solution to a DE.
@ Given the general solution to y’ = ay + b (it is y = Pet — ’3’)
@ Three models: Free fall, Mice/Owls, Newton's Law of Cooling.
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Today: Finish up visualizations in Chapter 1, look at an algorithm in 2.1.
First, let's get a solution to y’ = ay + b. Notice that this DE could be

expressed as:
N
yrvy) =\ T3,

which is the normal exponential growth model. That is, if Y =y + b/a,
then the DE is
Y =aY = Y =_Ce"

or
b b
_:Cat = :Cat__
y—i—a e y e 3

where C depends on the initial conditions...
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Example:

Solve y' = —2y +5



EESSS———
Example:

Solve y/ = -2y +5
SOLUTION:

5
y(t) = Ce 2t + >
We note that for any C, the solution will converge to 5/2 as t gets large
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@ Order of a DE (order of highest derivative)
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Vocab from the reading:
@ Order of a DE (order of highest derivative)
Example: Order of y/ +y3 =t> + 4t +5is: 1
o Linear DE (linear iny, y', y", etc)
Example: y’ + y3 = t? + 4t is nonlinear (y3)
Example: y” + 3y’ + 5y = 4t2 is linear (in y, y’, etc).
(More on this later)
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e Existence: Does every ODE y’ = f(t,y) have a solution y = ¢(t)?
(No).

@ A second question is one of uniqueness: If the ODE has a solution,
does it have more than one?
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Questions that we try to answer for DEs:
e Existence: Does every ODE y’ = f(t,y) have a solution y = ¢(t)?
(No).
@ A second question is one of uniqueness: If the ODE has a solution,
does it have more than one?
@ Third is a practical question: If the ODE has a solution, can we
compute it?

TODAY: Visualizing solutions, solving a linear equation.
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Visualizing solutions to DE




Visualizing solutions to DE
b
y'=ay+b  y(t)=Poe’ -~

Cases:
o If Pp =0, then y(t) is constant (y = —b/a).
Definition: An equilibrium solution is a constant solution y = k so
that y/ = 0.
@ Otherwise:
If a > 0, then the solutions will all “blow up” (|y(t)| — oo) except one

solution.
If a < 0, then all solutions tend toward equilibrium.
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Visualizing Solutions

A differential equation is like a “road map”:

y'=f(t,y)

That is, at each point (t,y), we can compute the slope of the line tangent
to the solution curve y(t).
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Visualizing Solutions

A differential equation is like a “road map”:

y'=f(t,y)

That is, at each point (t,y), we can compute the slope of the line tangent
to the solution curve y(t).

If the function y is well behaved, the tangent line should be a good
approximation to y.

Definition: A direction field is a plot in the (¢, y) plane that give the local
tangent lines to the solution to a first order ODE.

v

Example: y' =t — y?
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Visualizing Solutions

A differential equation is like a “road map”:

y'=f(t,y)

That is, at each point (t,y), we can compute the slope of the line tangent
to the solution curve y(t).

If the function y is well behaved, the tangent line should be a good
approximation to y.

Definition: A direction field is a plot in the (¢, y) plane that give the local
tangent lines to the solution to a first order ODE.

v

Example: y' =t — y?
In drawing a picture, we might consider curves of constant slope. For
example, with zero slope:
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ay + b whose direction field looks like:

Give an ODE of the form y’
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Same question as before:
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Choose a DE
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Homework Hint: #22, Section 1.1

8

4
V = §7rr
so if V! = kA, give V' in terms of V only.

A = 4rr?




Homework Hint: #14, Section 1.3

Differentiate the following with respect to t:

£(t) /0 " G6(s) ds

SOLUTION: Use the product rule and the FTC:

f'(t) /ot G(s)ds + f(t)G(t)
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Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

dy

5 Ay =) or '+ a(t)y = £(1)
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Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

dy

5 Ay =) or '+ a(t)y = £(1)

OBSERVATION: By the product rule and chain rule,
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Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

dy
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N
Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

Y sy =) oy alt)y = (1)

OBSERVATION: By the product rule and chain rule,

(yeP @) = yePO 4 P(£)yeP) = P (4 4 P'(2)y)

Question: Is there a function eP(®) that will turn the left side of the DE to
the derivative of something?
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Solve Linear DEs using Integrating Factor
Given y’ + a(t)y = f(t), we compute the integrating factor

o) a(t) dt
and multiply the DE by it:
of AUy + a(t)y) = F(r)el 2O
This makes the left side a single derivative:
(v(e)el ® dt)’ N WECL
which can be solved by integrating both sides.

y(t)efa(t) dt _ / f(t)efa(t) dt 4p
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1

y/ + ; y = e—2t
The integrating factor is

1
ef? dt eIn(t) ¢
so that

t(y' +3y) = te
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|
Example 1

1
y/ + E y = e—2t
The integrating factor is
ef%dt — () — 4
so that
t(y' +3y) = te
and ) 1
(ty) =te ™ = ty= —Ete_zt — Ze_Zt +C
(Remember to include the constant of integration!)
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|
Example 1

1
y' + p y = e 2t
lhe integrating factor is

1
ef?dt _ eIn(rr) — ¢

so that

t(y' +3y) = te

and
2t

1 1
(ty) = te” = ty= —Ete_zt - Ze_Zt +C
(Remember to include the constant of integration!)
The general solution:

1, 1

Y c
Y= 4" t

—2t +
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