Solutions: Section 2.5

e 2.5 1: Given %’ = ay + by? = y(a + by) with a,b > 0. For the more general case, we

will let yo be any real number.

Always look for the equilibria first! In this case,
yla+by)=0 = y=0o0ry=—-b/a

To make the phase plot (graph of 3’ versus y), we note that ay + by? is a parabola

opening upwards, and it intersects the y—axis at the equilibria, y = 0 and y = —b/a.
From this graph, we see that y = 0 is an unstable equilibrium, and y = —b/a is stable.
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e 2.5, )3: Given ‘th’ =y(y — 1)(y — 2), and let yo be any real number (the more general
case).

Then the phase plot is a cubic function going through the equilibria at y = 0, y = 1,
=2.
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e 2.5, 7: With the DE,

dy 2
= k(] —
7 (1-y)

the only equilibrium solution is: k(1 — y)? = 0 = y = 1. Graphing this as 3/’ versus v,
we get an upward parabola whose vertex is lying on the y—axis at y = 1.

For part (b), see the graph.
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For part (c), the DE is separable:
/1dy—/kdt N R WYe
(1—y) 1—y

(Use u, du substitution for the integral on the left side of the equation). At this stage,
we might as well solve for the arbitrary constant:

This is valid as long as yo # 1. In the case that yy = 1, the solution is y(¢) = 1 (the
equilibrium solution).

Solving for y,
1

_kp+£%

-y y=1

T kt+C

Let us analyze this last equation: If ﬁ > 0, then as t — oo, kt + ﬁ — 00, SO
y(t) — 1. Therefore, if yo < 1, y(t) — 1 as t — oo (as expected from the phase plot
and direction field).

On the other hand, consider the case when yy > 1 (the case when y, = 1 gave an

equilibrium solution). In this case, ﬁ is negative, which means that there will be a
vertical asymptote in positive time (also see figure below)
L 1

From our phase plot, we expect solutions with 3, > 1 to go to +00o- Does that occur
algebraically?

=

1
o) =1
kt + @ t + k(l—yo)
so we see that the denominator is approaching zero from the left, so that y(t) — 400

ast — —1/(k(1 —yo)) from the left.

e 2.5: 8,10, 11 are in the Figure below.



Figure 1: Figure for 7(c) - Note the vertical asymptote.
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e Exercise 14: It is OK to argue this graphically, as we did in class. In particular, you



should be able to draw a function so that f(yy) =0 and f'(yo) > 0 (or f'(yo) < 0).
e 2.5 22: Please be sure to read the description carefully- Nice intro to epidemiology.

1. The equilibria are at y = 0 and y = 1. The phase plot of ¢ = ay(1l — y) is
a parabola opening downward. A sketch of the phase plot shows that y = 0 is
unstable and y = 1 is stable.

2. To solve this, we’ll need to use partial fraction decomposition:

1 1 1
———dy=adt= [ -+ ——dy=at+C=hnly—In|l —y|=at+C
y(1—y) y 1-y
so that
In |—oaf+C’ = L = Ae
—y L—y
Solving for A, yo/(1 — yo) = A. Keep this in mind, and let’s solve for y first:
Aeat
= ——
y(t) = T oot

We will want to analyze what happens as ¢ — 0o, so it will be more convenient
to divide numerator and denominator by Ae®:

1 1

t pu— pu—
y( ) %e—at + 1 1;%e—odf + 1

This solution is valid as long as yy # 0 and yo # 1. In those cases, our solutions
are the equilibrium solutions, y(t) = 0 and y(t) = 1. Now let us analyze the
behavior of y(t).

We see that, as t — oo, y(t) — 1. But this is not the end of the story: If a
solution begins with yo < 0, for example, we know that the solution CANNOT
approach 1 as t — oo, because that would mean it would have to cross y(t) = 0
(and solutions cannot intersect by the E& U Theorem).

The following is a much more detailed analysis than what was expected in the
homework problem- However, read through it to see exactly what the behavior of
all solutions looks like.

The only point that makes us pause is the denominator. Set it to zero and solve:

1-— 1
yoefat -1 = efat _ Yo = = ——.1n ( Yo )
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The reason this is a nice way of analyzing t:

Alternatively,

Q=
.
=

N
—_
|
5 |-
~_—



— If yo > 1, then we will be taking the log of a number less than 1 (which gives

e 2.5, 23:

a negative value). In this case, ¢ is negative and our solution y(t) is valid for
all t > (1/a)In(1 — (1/yo)), and y(t) — 1 as t — oo.

If 0 < yo < 1, this denominator is never zero (no solution for ¢ in the real
numbers). In this case, y(t) is valid for ALL ¢ (not just positive), and again
the limit as ¢ — oo is 1.

If yo < 0, then the solution is valid for:

1 1
—o<t< —In[1l—-—
«@ Yo

so that y(t) has a vertical asymptote on the positive ¢ axis. In this case, it is
not appropriate to take the limit as ¢t — co.

First solve y' = — By, which is y(t) = yoe .

NOTE: There is a misprint in Problem 23, in defining dz/dt. The disease
spreads (or INCREASES) at a rate proportional to the number of carrier-susceptible
interactions (z— and y— interactions), which means that the constant in front should

be POSITIVE.

We are told to substitute this into the DE:

Zf = tazy = ax (yoe_ﬁt)

Solve this separable equation for z(t):

1 —a-
/—dx:ozyg/e_ﬂtdt = In|z|= Ojgyoe_ﬁt—FC
x

Solving for the initial value,

so that:

a - Yo

g

C =lIn|zg| +

In|z| = Oé'ﬁyo (1 — e_ﬁt) + In |z

Finally, exponentiating both sides:

And the limit as t — oo of x(t) is xge ?

gj(t) — xoengo (1_9—575)

a-yg



e 2.5 24
I hope you're asking yourself what it is we’re doing in this problem:

The text is getting to a “normalized” model of the disease, where at time 0 none of the
population has the disease (z(0) = 1.00 or z(0) = 100%), then as time goes on, we're
modeling the percentage of the population that has not yet been exposed to smallpox-
That is,

_ Number of people who have not been exposed to smallpox at time ¢t (%)

z(t) = =

Number of people who are (still) alive at time ¢ n(t)

This is an interesting way of doing the modeling, since we are focused on a single
“cohort”.

For our model, the susceptible population will only decline either due to exposure to
smallpox (8 is the exposure rate, v is the death rate. Side Remark: The greek symbol
v is read as “nu”, or “noo”) or death from something else:

dx

pri —(Exposure rate-Smallpox) — (Death rate from other)

The constants are typically given as proportions- That is, the overall exposure rate to
smallpox would be fz(t), and we're told that the death rate will be u(t)z(t). Putting
these together gives us the text’s equation:

Y
Now, we might notice that since v is the death rate (as a proportion) from smallpox,
and (3 is the exposure rate, then the overall death rate in the population due to smallpox
will be v S x(t). Similarly, we need to take away the population that has died from
other causes, u(t)n(t) (recall that n(t) is the number of people alive at time ¢). Now
we have the DE for n(¢):

dn

8 = —vBa(t) — u(t)n(t) = —vBr — pn

Now we get to the questions:
(a) Let z=x/n. Then

dz  'n—zxn’ —pfrzn— prn — z(—vfr — un)

And, since z(0) = n(0) (everyone is alive and susceptible at time 0), then z(0) = 1
(or 100%).



(b) To solve the DE, we see that

/dliwyh:/—ﬁﬁ

So that, using partial fractions on the left, we get
1
= —
z(t) (1—v)elt +v
Using the suggested values of v = = 1/8 and ¢ = 20, we get z ~ 0.093, so after

20 years, only about 9.2% of the population remain unexposed to smallpox.

e 2.5, 25: The basic idea behind problems 25 and 26 is that there is a new parameter,
a. By changing this parameter, we can change the number and type of the equilibrium
solutions.

In Problem 25, the equilibrium solutions are given by:

d
d—izO:a—yQZO = y=+va
Graphically in the phase plot, 3’ = —y? is an upside down parabola, and —y? + a

simply translates the parabola up and down.

Therefore, in words:

— If a < 0, we have no equilibrium solutions.

— If a = 0, we have a single equilibrium solution at a = 0, and it is semistable.
Since ¥ is always negative (and zero at y = 0), in the direction field, solutions
that begin above yy = 0 decrease to zero, and solutions that begin below yy = 0
decrease to negative infinity.

— If a > 0, we have two equilibrium solutions (at y/a and —+/a). The positive root
is a stable equilibrium, and the negative root is an unstable equilibrium.

We can summarize this graphically in Figure 2.5.10 on page 93.

e Problem 26: Finding the equilibrium:
yla—y*) =0
We see that y(t) = 0 is ALWAYS an equilibrium solution for any value of a. The other
solutions will be the same as before (we’ll have to re-do our stability analysis):
— If a < 0, the only equilibrium is y(¢) = 0, and this is stable.

— If a = 0, same situation.

— If @ > 0, two new equilibria appear, y(t) = £v/a. Now, y(t) = 0 switches stability
(it is now unstable), and the two new equilibria, y(¢) = 4++/a are both stable.



