
Solutions to Selected Problems, 3.7 (Model of Mass-Spring System)

NOTE about units: On quizzes/exams, we will always use the standard units of meters,
kilograms and seconds, or feet, pounds and seconds. The textbook likes to mix them up
somewhat.
3.7, 1, 2, 5-7, 11, 14. Also: Sect 3.4, 38 and 39

1-2 The first two exercises are for practice using Equation 17 (p 195)

5. A mass weighing 2 lb stretches a spring 6 inches.

Remark: This information is here so that we can get the spring constant. Change the
6 inches to 1/2 foot:

mg − kL = 0 ⇒ 2− k

2
= 0 ⇒ k = 4

From this, we can also get the mass using g = 32 ft/sec2 (the constant would be given
to you):

mg = 2 ⇒ m =
2

g
=

2

32
=

1

16

Continuing with the problem, we only need to determine γ- Since there is no damping,
γ = 0, and

1

16
u′′ + 0u′ + 4u = 0 ⇒ u′′ + 64u = 0

If the mass is pulled down 3 inches and released, the initial conditions are u(0) = 1
4

and u′(0) = 0. Solving the IVP, we get

u(t) =
1

4
cos(8t)

so the amplitude is 1/4 and the period is 2π/8 or π/4. You don’t need to plot it for
now.

6. First thing is that your units should stay kg, meters, seconds.

So, the mass is 100 g = 0.1 kg and the length is 5 cm = 0.05 m (I will give you “mks”
units on the exam/quiz). Given these values, it is straightforward to proceed. First
the spring constant:

mg − kL = 0 ⇒ (0.1)(9.8)− k(0.05) = 0 ⇒ k = 19.6

That gives the DE:

1

10
u′′ + 19.6u = 0 u(0) = 0, u′(0) =

1

10



(NOTE: We said that the force for the weight was mg, not −mg, so we are actually
setting “down” as positive u(t)).

Multiply by 10 before solving:

u′′ + 196u = 0 ⇒ u(t) = C1 cos(14 t) + C2 sin(14 t)

Solving for the coefficients, we should get:

u(t) =
1

140
sin(14 t)

When does the mass return to equilibrium? We know that sin(A) = 0 when A = 0
and A = π, so in this case, we take

14t = π t =
π

14
≈ 0.224 rad

7. In this case, we have US Customary units, so use g = 32ft/sec2, and use lbs, feet and
seconds.

For the spring constant: mg − kL = 0 means that

3− k

4
= 0 ⇒ k = 12

We have no damping, u(0) = − 1
12

ft (the spring is compressed), and u′(0) = 2ft/sec.

Therefore,
3

32
u′′ + 12u = 0 u(0) = − 1

12
u′(0) = 2

We might notice that this does simplify a bit by multiplying through by 32/3:

u′′ + 128u = 0 u(0) = − 1

12
u′(0) = 2

(Note that 128 = 64× 2)

u(t) = C1 cos(8
√

2 t) + C2 sin(8
√

2 t)

The initial conditions give us the equations:

C1 = − 1

12
C2 =

1

4
√

2

Writing the solution as R cos(ωt− δ), we find that:

R =
√
C2

1 + C2
2 =

√
1

144
+

1

32
=

√
11

288



ω = 8
√

2 δ = tan−1
(

3√
2

)
The phase shift is δ, the amplitude is given by R. The frequency F , period P , are
given by:

F =
4
√

2

π
P =

2π

8
√

2
=

π

4
√

2

11. (Watch the units!) Building the model, the spring constant is

k =
3

0.1
= 30 N/m

and the damping coefficient:

γu′ = Fd ⇔ γ(5) = 3 ⇒ γ =
3

5

so that, keeping meters as the unit of length (and downward as positive):

2u′′ +
3

5
u′ + 30u = 0 u(0) =

5

100
=

1

20
u′(0) =

1

10

Divide by 2 if you want to complete the square:

u′′ +
3

10
u′ + 15u = 0 ⇒ r2 +

3

10
r +

32

202
= −15 +

9

202
=

9− 6000

202
=

5991

202

Using exact arithmetic, we have the following, which we can approximate:

r = − 3

20
±
√

5991

20
i r ≈ −0.15± 3.87 i

Therefore, if we let µ = 3.87, we have:

u(t) = e−0.15t(C1 cos(µt) + C2 sin(µt))

so that we have the two equations in C1, C2:

C1 = 1/20 = 0.05
−0.15C1 + µC2 = 1/10 = 0.1

⇒ C1 = 0.05 C2 ≈ 0.0045.

14. The period of motion of an undamped (unforced) spring is the period of the homoge-
neous part of the solution to mu′′ + ku = 0, which is

2π√
k/m

= 2π

√
m

k

At equilibrium, mg = kL, so that m
k

= L
g
, so we can write the equation above as:

2π

√
L

g



Section 3.4 Exercises

These are only about analyzing our possible solutions to:

mu′′ + γu′ + ku = 0

if we force m > 0 and γ, k ≥ 0.

SOLUTION: Since m, γ, k are all positive, then

• Case 1: If γ2 − 4mk > 0, then γ2 − 4mk < b2, so the roots are both negative:

r =
−γ ±

√
γ2 − 4mk

2m
< 0

Lets call the roots −r1,−r2 just to emphasize the fact that they are negative.
Then

u(t) = C1e
−r1t + C2e

−r2t

which goes to zero as t→∞, for any choice of C1, C2.

• Case 2: If γ2 − 4mk < 0, then the real part of the complex root r is −γ/2m,
which again is negative (also see below)

r =
−γ
2m
±
√

4mk − γ2
2m

i =
−γ
2m
± βi

The general solution is then:

u(t) = e−(γ/2m)t (C1 cos(βt) + C2 sin(βt))

The exponential function will force the rest of the solution to zero as t goes to
infinity.

SPECIAL CASE: γ = 0. With no damping, then r = ±βi (same β as before), so
that

u(t) = C1 cos(βt) + C2 sin(βt)

which does NOT go to zero, but remains bounded (and is periodic).

• Case 3: γ2 − 4mk = 0. In this case, r = −γ/2m (which is negative), and the
general solution is

u(t) = e−(γ/2m)t(C1 + C2t)

which again goes to zero as t→∞.

Therefore, in all cases but one (where damping is zero), the general solution to the
homogeneous equation always tends to zero as t→∞.


