$g_i(t)$ is : The ansatz for y_{p_i} : $P_n(t)$

$g_i(t)$ is :	The ansatz for y_{p_i} :
$P_n(t)$	$t^{s}(a_{n}t^{n}+\ldots+a_{2}t^{2}+a_{1}t+a_{0})$

$g_i(t)$ is :	The ansatz for y_{p_i} :
$P_n(t)$	$t^{s}(a_{n}t^{n}+\ldots+a_{2}t^{2}+a_{1}t+a_{0})$
$D(u) \Omega^{\dagger}$	

$g_i(t)$ is :	The ansatz for y_{p_i} :
$P_n(t)$	$t^{s}(a_{n}t^{n}+\ldots+a_{2}t^{2}+a_{1}t+a_{0})$
$P_n(t)e^{\alpha t}$	$t^s\mathrm{e}^{\alpha t}(a_nt^n+\ldots+a_2t^2+a_1t+a_0)$

$g_i(t)$ is :	The ansatz for y_{p_i} :
$P_n(t)$	$t^{s}(a_{n}t^{n}+\ldots+a_{2}t^{2}+a_{1}t+a_{0})$
$P_n(t)e^{\alpha t}$	$t^s e^{\alpha t} (a_n t^n + \ldots + a_2 t^2 + a_1 t + a_0)$
$P_n(t) \mathrm{e}^{lpha t} \left\{ egin{array}{l} \sin(eta t) \ \cos(eta t) \end{array} ight.$	I

$g_i(t)$ is :	The ansatz for y_{p_i} :
$P_n(t)$	$t^{s}(a_{n}t^{n}+\ldots+a_{2}t^{2}+a_{1}t+a_{0})$
$P_n(t)e^{\alpha t}$	$t^s e^{\alpha t} (a_n t^n + \ldots + a_2 t^2 + a_1 t + a_0)$
$P_n(t)e^{\alpha t} \left\{ egin{array}{l} \sin(eta t) \ \cos(eta t) \end{array} ight.$	$t^{s}e^{\alpha t}\cos(\beta t)(a_{n}t^{n}+\ldots+a_{2}t^{2}+a_{1}t+a_{0})+ t^{s}e^{\alpha t}\sin(\beta t)(b_{n}t^{n}+\ldots+b_{2}t^{2}+b_{1}t+b_{0})$

where s=0,1 or 2 so that no part of y_{p_i} is part of the homogeneous solution.

Solve $y'' - 3y' - 4y = 3te^{-t}$

Solve
$$y'' - 3y' - 4y = 3te^{-t}$$

SOLUTION:

• Homogeneous part first: (r-4)(r+1) = 0, so

$$y_h(t) = C_1 e^{4t} + C_2 e^{-t}$$

Particular part:

Solve
$$y'' - 3y' - 4y = 3te^{-t}$$

SOLUTION:

• Homogeneous part first: (r-4)(r+1)=0, so

$$y_h(t) = C_1 e^{4t} + C_2 e^{-t}$$

Particular part:

First guess is: $(At + B)e^{-t}$.

Solve $y'' - 3y' - 4y = 3te^{-t}$ SOLUTION:

• Homogeneous part first: (r-4)(r+1) = 0, so

$$y_h(t) = C_1 e^{4t} + C_2 e^{-t}$$

• Particular part: First guess is: $(At + B)e^{-t}$. Substituting back into the DE (algebra redacted):

$$-5Ae^{-t} = 3te^{-t}$$

Solve
$$y'' - 3y' - 4y = 3te^{-t}$$

SOLUTION:

• Homogeneous part first: (r-4)(r+1) = 0, so

$$y_h(t) = C_1 e^{4t} + C_2 e^{-t}$$

• Particular part:

First guess is: $(At + B)e^{-t}$.

Substituting back into the DE (algebra redacted):

$$-5Ae^{-t} = 3te^{-t}$$
 \Rightarrow $-5A = 3t$ for all t

Solve
$$y'' - 3y' - 4y = 3te^{-t}$$

SOLUTION:

• Homogeneous part first: (r-4)(r+1) = 0, so

$$y_h(t) = C_1 e^{4t} + C_2 e^{-t}$$

• Particular part:

First guess is: $(At + B)e^{-t}$.

Substituting back into the DE (algebra redacted):

$$-5Ae^{-t} = 3te^{-t}$$
 \Rightarrow $-5A = 3t$ for all t

CORRECT GUESS:
$$y_p(t) = t(At + B)e^{-t}$$

Solve
$$y'' - 3y' - 4y = 3te^{-t}$$

SOLUTION:

• Homogeneous part first: (r-4)(r+1)=0, so

$$y_h(t) = C_1 e^{4t} + C_2 e^{-t}$$

Particular part:

First guess is: $(At + B)e^{-t}$.

Substituting back into the DE (algebra redacted):

$$-5Ae^{-t} = 3te^{-t}$$
 \Rightarrow $-5A = 3t$ for all t

CORRECT GUESS: $y_p(t) = t(At + B)e^{-t}$ Note that t^2e^{-t} and te^{-t} are not fcns in y_h .

$$-(10At + (5B - 2A)) = 3t$$

$$-(10At + (5B - 2A)) = 3t$$

So we equate the coefficients and solve:

$$t \text{ terms:} \qquad -10A = 3 \\ \text{Constants:} \qquad 2A - 5B = 0 \qquad \Rightarrow \qquad A = -3/10 \\ B = -3/25$$

$$-(10At + (5B - 2A)) = 3t$$

So we equate the coefficients and solve:

$$t \text{ terms:} \qquad -10A = 3 \\ \text{Constants:} \qquad 2A - 5B = 0 \qquad \Rightarrow \qquad A = -3/10 \\ B = -3/25$$

Put it all together at the end.

$$-(10At + (5B - 2A)) = 3t$$

So we equate the coefficients and solve:

$$t \text{ terms:} \qquad -10A = 3 \\ \text{Constants:} \qquad 2A - 5B = 0 \qquad \Rightarrow \qquad A = -3/10 \\ B = -3/25$$

Put it all together at the end. The general solution is

$$y(t) = C_1 e^{4t} + e^{-t} \left(C_2 - \frac{3}{25}t - \frac{3}{10}t^2 \right)$$

• $y'' - 3y' - 4y = 3t\cos(2t) + \sin(2t)$, with r = -1, 4.

•
$$y'' - 3y' - 4y = 3t\cos(2t) + \sin(2t)$$
, with $r = -1, 4$.

$$y_p(t) = (At + B)\cos(2t) + (Ct + D)\sin(2t)$$

•
$$y'' - 3y' - 4y = 3t\cos(2t) + \sin(2t)$$
, with $r = -1, 4$.

$$y_p(t) = (At + B)\cos(2t) + (Ct + D)\sin(2t)$$

• $y'' - 3y' - 4y = \cos(3t) + t\sin(t)$, with r = -1, 4.

•
$$y'' - 3y' - 4y = 3t\cos(2t) + \sin(2t)$$
, with $r = -1, 4$.

$$y_p(t) = (At + B)\cos(2t) + (Ct + D)\sin(2t)$$

•
$$y'' - 3y' - 4y = \cos(3t) + t\sin(t)$$
, with $r = -1, 4$.

$$y_p(t) = A\cos(3t) + B\sin(3t) + (Ct + D)\cos(t) + (Et + F)\sin(t)$$

•
$$y'' - 3y' - 4y = 3t\cos(2t) + \sin(2t)$$
, with $r = -1, 4$.

$$y_p(t) = (At + B)\cos(2t) + (Ct + D)\sin(2t)$$

•
$$y'' - 3y' - 4y = \cos(3t) + t\sin(t)$$
, with $r = -1, 4$.

$$y_p(t) = A\cos(3t) + B\sin(3t) + (Ct + D)\cos(t) + (Et + F)\sin(t)$$

•
$$y'' - 2y' + 10y = te^t \sin(3t)$$
 with $r = 1 \pm 3i$

•
$$y'' - 3y' - 4y = 3t\cos(2t) + \sin(2t)$$
, with $r = -1, 4$.

$$y_p(t) = (At + B)\cos(2t) + (Ct + D)\sin(2t)$$

•
$$y'' - 3y' - 4y = \cos(3t) + t\sin(t)$$
, with $r = -1, 4$.

$$y_p(t) = A\cos(3t) + B\sin(3t) + (Ct + D)\cos(t) + (Et + F)\sin(t)$$

•
$$y'' - 2y' + 10y = te^t \sin(3t)$$
 with $r = 1 \pm 3i$

$$y_p(t) = e^t [(At + B)\sin(3t) + (Ct + D)\cos(3t)]$$

•
$$y'' - 3y' - 4y = 3t\cos(2t) + \sin(2t)$$
, with $r = -1, 4$.

$$y_p(t) = (At + B)\cos(2t) + (Ct + D)\sin(2t)$$

•
$$y'' - 3y' - 4y = \cos(3t) + t\sin(t)$$
, with $r = -1, 4$.

$$y_p(t) = A\cos(3t) + B\sin(3t) + (Ct + D)\cos(t) + (Et + F)\sin(t)$$

•
$$y'' - 2y' + 10y = te^t \sin(3t)$$
 with $r = 1 \pm 3i$

$$y_p(t) = e^t [(At + B)\sin(3t) + (Ct + D)\cos(3t)] t$$

•
$$y'' - 4y' + 4y = 3t^2$$
, with $r = -2, -2$.

•
$$y'' - 4y' + 4y = 3t^2$$
, with $r = -2, -2$.

$$y_p = At^2 + Bt + C$$

•
$$y'' - 4y' + 4y = 3t^2$$
, with $r = -2, -2$.

$$y_p = At^2 + Bt + C$$

• $y'' + 4y = t^3 e^t$ with $r = \pm 2i$

•
$$y'' - 4y' + 4y = 3t^2$$
, with $r = -2, -2$.

$$y_p = At^2 + Bt + C$$

• $y'' + 4y = t^3 e^t$ with $r = \pm 2i$

$$y_p = e^t (At^2 + Bt + C)$$

• $y'' - 4y' + 4y = 3t^2$, with r = -2, -2.

$$y_p = At^2 + Bt + C$$

• $y'' + 4y = t^3 e^t$ with $r = \pm 2i$

$$y_p = e^t (At^2 + Bt + C)$$

• $y'' + 4y = 7t\cos(2t)$ with $r = \pm 2i$

•
$$y'' - 4y' + 4y = 3t^2$$
, with $r = -2, -2$.

$$y_p = At^2 + Bt + C$$

• $y'' + 4y = t^3 e^t$ with $r = \pm 2i$

$$y_p = e^t (At^2 + Bt + C)$$

• $y'' + 4y = 7t\cos(2t)$ with $r = \pm 2i$

$$y_p = t(At + B)\cos(2t) + (Ct + D)\sin(2t)$$

•
$$y'' - 4y' + 4y = 3t^2$$
, with $r = -2, -2$.

$$y_p = At^2 + Bt + C$$

• $y'' + 4y = t^3 e^t$ with $r = \pm 2i$

$$y_p = e^t (At^2 + Bt + C)$$

• $y'' + 4y = 7t\cos(2t)$ with $r = \pm 2i$

$$y_p = t(At + B)\cos(2t) + (Ct + D)\sin(2t)$$

• $y'' - 4y' + 4y = e^{-2t}$ with r = -2, -2.

•
$$y'' - 4y' + 4y = 3t^2$$
, with $r = -2, -2$.

$$y_p = At^2 + Bt + C$$

• $y'' + 4y = t^3 e^t$ with $r = \pm 2i$

$$y_p = e^t (At^2 + Bt + C)$$

• $y'' + 4y = 7t\cos(2t)$ with $r = \pm 2i$

$$y_p = t(At + B)\cos(2t) + (Ct + D)\sin(2t)$$

• $y'' - 4y' + 4y = e^{-2t}$ with r = -2, -2.

$$y_p = t^2 A e^{-2t}$$

3.6: Variation of Parameters

We're looking for a technique for getting the particular solution to the *GENERAL* linear second degree ODE:

$$y'' + p(t)y' + q(t)y = g(t)$$
 (*)

IDEA: Let y_1, y_2 be a fundamental set of solutions to (*).

ANSATZ:

$$y_p = u_1(t)y_1(t) + u_2(t)y_2(t) = u_1y_1 + u_2y_2$$

so that:

$$y_p' = (u_1'y_1 + u_1y_1') + (u_2'y_2 + u_2y_2')$$

We will assume the following, which becomes one of our conditions:

$$u_1'y_1 + u_2'y_2 = 0$$

With that, we have:

$$y_p = u_1 y_1 + u_2 y_2$$

$$y'_p = u_1 y'_1 + u_2 y'_2$$

$$y''_p = u'_1 y'_1 + u_1 y''_1 + u'_2 y_2 + u_2 y''_2$$

Substitute into the DE: Substitute into the DE:

$$y_p'' = u_1'y_1' + u_1y_1'' + u_2'y_2 + u_2y_2''$$

 $+p(t)y_p' = pu_1y_1' + pu_2y_2'$
 $+q(t)y_p = qu_1y_1 + qu_2y_2$
 $g(t) =$

With that, we have:

$$y_p = u_1 y_1 + u_2 y_2$$

$$y'_p = u_1 y'_1 + u_2 y'_2$$

$$y''_p = u'_1 y'_1 + u_1 y''_1 + u'_2 y_2 + u_2 y''_2$$

Substitute into the DE: Substitute into the DE:

$$y''_p = u'_1 y'_1 + u_1 y''_1 + u'_2 y_2 + u_2 y''_2 + p(t) y'_p = pu_1 y'_1 + pu_2 y'_2 + q(t) y_p = qu_1 y_1 + qu_2 y'_2 + q(t) = u'_1 y'_1 + 0 + u'_2 y'_2 + 0$$

Summary Page: Variation of Parameters

Given y'' + p(t)y' + q(t)y = g(t), let y_1, y_2 solve the homogeneous equation, and set

$$y_p = u_1 y_1 + u_2 y_2$$

Then u_1, u_2 satisfy the following equations

$$u'_1y_1 + u'_2y_2 = 0$$

 $u'_1y'_1 + u'_2y'_2 = g(t)$

Which is solved via Cramer's Rule:

$$u_1' = \frac{\begin{vmatrix} 0 & y_2 \\ g(t) & y_2' \end{vmatrix}}{W(y_1, y_2)} \quad u_2' = \frac{\begin{vmatrix} y_1 & 0 \\ y_1' & g(t) \end{vmatrix}}{W(y_1, y_2)}$$

October 9, 2014 8 / 14

Cramer's Rule gave:

$$u_1' = \frac{\left| \begin{array}{cc} 0 & y_2 \\ g(t) & y_2' \end{array} \right|}{W(y_1, y_2)} \quad u_2' = \frac{\left| \begin{array}{cc} y_1 & 0 \\ y_1' & g(t) \end{array} \right|}{W(y_1, y_2)}$$

Which gives us u_1, u_2

$$u_1 = \int \frac{-y_2 g(t)}{W(y_1, y_2)} dt$$
 $u_2 = \int \frac{y_1 g(t)}{W(y_1, y_2)} dt$

So that, if we wanted to write $y_p(t)$, we could:

$$y_p(t) = y_1(t) \int \frac{-y_2g(t)}{W(y_1, y_2)} dt + y_2(t) \int \frac{y_1g(t)}{W(y_1, y_2)} dt$$

Use any method to find the general solution:

$$y'' - 2y' + y = \frac{e^t}{1 + t^2} + t^2 e^t$$

SOLUTION: First, the solution to the characteristic equation is r = 1, 1:

$$y_h = \mathrm{e}^t (C_1 + C_2 t)$$

And...?

$$y_1 = e^t$$
, $y_2 = te^t$, $W = e^{2t}$

$$y_1 = e^t$$
, $y_2 = te^t$, $W = e^{2t}$

$$u_1' = \frac{-y_2 g}{W} = \frac{-t e^t \frac{e^t}{(1+t^2)}}{e^{2t}} = \frac{-t}{1+t^2} \qquad u_2' = \frac{y_1 g}{W} = \frac{e^t \frac{e^t}{(1+t^2)}}{e^{2t}} = \frac{1}{1+t^2}$$

$$y_1 = e^t$$
, $y_2 = te^t$, $W = e^{2t}$

$$u_1' = \frac{-y_2 g}{W} = \frac{-t e^t \frac{e^t}{(1+t^2)}}{e^{2t}} = \frac{-t}{1+t^2} \qquad u_2' = \frac{y_1 g}{W} = \frac{e^t \frac{e^t}{(1+t^2)}}{e^{2t}} = \frac{1}{1+t^2}$$
$$u_1 = -\frac{1}{2} \ln(1+t^2) \qquad u_2 = \tan^{-1}(t)$$

$$y_1 = e^t$$
, $y_2 = te^t$, $W = e^{2t}$

$$u_1' = \frac{-y_2 g}{W} = \frac{-t e^t \frac{e^t}{(1+t^2)}}{e^{2t}} = \frac{-t}{1+t^2} \qquad u_2' = \frac{y_1 g}{W} = \frac{e^t \frac{e^t}{(1+t^2)}}{e^{2t}} = \frac{1}{1+t^2}$$
$$u_1 = -\frac{1}{2} \ln(1+t^2) \qquad u_2 = \tan^{-1}(t)$$

Therefore, the full solution is:

$$y_{p_1}(t) = u_1 y_1 + u_2 y_2 = -\frac{1}{2} e^t \ln(1+t^2) + t e^t \tan^{-1}(t)$$

Now take $g_2(t) = t^2 e^t$ and use Method of Undet Coeffs:

Now take $g_2(t) = t^2 e^t$ and use Method of Undet Coeffs:

$$y_p = (At^2 + Bt + C)e^t$$

Now take $g_2(t) = t^2 e^t$ and use Method of Undet Coeffs:

$$y_p = (At^2 + Bt + C)e^t$$

BUT we have to multiply by t^2 , so that

$$y_p = t^2(At^2 + Bt + C)e^t = (At^4 + Bt^3 + Ct^2)e^t$$

A little messy algebra:

Therefore, A = 1/12, B = 0, C = 0, and $y_p = \frac{1}{12}t^4e^t$.

The general solution to $y'' - 2y' + y = \frac{e^t}{1+t^2} + t^2 e^t$ is:

$$y(t) = e^t \left(C_1 + C_2 t + \frac{1}{12} t^4 \right) - \frac{1}{2} e^t \ln(1 + t^2) + t e^t an^{-1}(t)$$