Selected Solutions, 5.4

Section 5.4 offers us a review of Euler Equations and introduces us to something called a regular singular point.

HOMEWORK CHANGE: We probably won't cover 5.5 for the exam (to be announced in class), so in that case, change the homework in Section 5.4 to the following:

1.

$$x^2y'' + 4xy' + 2y = 0$$

The characteristic equation is:

$$r(r-1) + 4r + 2 = 0 \implies r^2 + 3r + 2 = 0 \implies (r+2)(r+1) = 0$$

So the general solution is:

$$y = C_1 x^{-1} + C_2 x^{-2}$$

3.

$$x^2y'' - 3xy' + 4y = 0$$

As before, go to the characteristic equation:

$$r(r-1) - 3r + 4 = 0 \implies r^2 - 4r + 4 = 0 \implies (r-2)^2 = 0$$

The solution is:

$$y = x^2(C_1 + C_2 \ln|x|)$$

10. This one is a bit different. You can let w = x - 2, then back-substitute at the end.

$$w^2y'' + 5wy' + 8y = 0 \implies r(r-1) + 5r + 8 = 0 \implies r^2 + 4r + 8 = 0$$

Complete the square (or use the quadratic formula):

$$(r^2 + 4r + 4) + 4 = 0 \implies (r+2)^2 = -4 \implies r = -2 \pm 2i$$

Therefore, the solution is:

$$y = x^{-2} (C_1 \cos(2 \ln |x - 2|) + C_2 \sin(2 \ln |x - 2|)$$

17. Put the DE in standard form first:

$$y'' + \frac{1 - x}{x}y' + \frac{x}{x}y = 0$$

Therefore, $q(x) = \frac{1-x}{x}$ and r(x) = 1. The point of concern is $x_0 = 0$, so we take that limit:

$$\lim_{x \to 0} \frac{1 - x}{x} = -1 \qquad \qquad \lim_{x \to 0} x^2 \cdot 1 = 0$$

both limits are finite, so $x_0 = 0$ is a regular singular point.

22. Same technique as 17.

$$y'' + \frac{x}{x^2} + \frac{x^2 - \nu^2}{x^2}y = 0$$

SO

$$\lim_{x \to 0} x p(x) = 1 \qquad \qquad \lim_{x \to 0} x^2 r(x) = -\nu^2$$

Therefore, $x_0 = 0$ is a regular singular point.

25. We have two singular points. One at $x_0 = -2$ and $x_0 = 1$. We check both.

$$y'' + \frac{3(x-1)}{(x+2)^2(x-1)}y' - \frac{2(x+2)}{(x+2)^2(x-1)}$$

At $x_0 = -2$, we have:

$$\lim_{x \to -2} (x+2)p(x) = \frac{3}{(x+2)} = \text{ DNE}$$

Since the limit does not exist, the point $x_0 = -2$ is an irregular singular point. Checking at $x_0 = 1$, we have:

$$\lim_{x \to 1} (x-1)p(x) = \frac{3(x-1)}{(x+2)^2} = 0 \qquad \qquad \lim_{x \to 1} (x-1)^2 q(x) = \frac{-2(x-1)}{(x+2)} = 0$$

Therefore, x = 1 is a regular singular point.

(26 is very similar to the other two problems).