Clarification of a couple of Points in 4.4

In Section 4.4, our text makes several statements that we wish to clarify here, and a caution.

CAUTION: In Section 4.4, our text is comparing the steady state to the form: $A\cos(\omega t + \phi)$ and NOT to the form we used in class (and will continue to use):

$$R\cos(\omega t - \delta)$$

This does not effect the amplitude, but it does effect the phase shift.

On page 420, replace the formula for ϕ with the formula for δ :

$$\tan(\phi) = -\frac{p\omega}{q - \omega^2} \quad \Rightarrow \quad \tan(\delta) = \frac{p\omega}{q - \omega^2}$$

where we add π if needed (so δ will be from Quadrant I or II).

Additional Note:

With the ansatz $y_p = Ae^{i\omega t}$, we solved $y'' + py' + qy = cos(\omega t)$ by finding that

$$A = \frac{1}{b} = \frac{1}{(q - \omega^2) + pwi}$$

When looking for the maximum amplitude of A with respect to ω , remember that

$$\frac{d}{d\omega} \frac{1}{\sqrt{f(\omega)}} = \frac{f'(\omega)}{-2(f(\omega)^{3/2})}$$

So if we set that to zero, we just need to find $f'(\omega) = 0$.

Example 1

Find the particular solution to $y'' + y' + 4y = \cos(2t)$.

Solution:

The ansatz is $y_p = Ae^{2it}$, and substituting it into the DE gives us:

$$Ae^{2it}\left(-4+2i+4\right) = e^{i\omega t}$$

so that $A = \frac{1}{2i}$. The amplitude is 1/|2i|, or 1/2.

The phase angle is the argument of 2i, which is $\pi/2$.

$$\frac{1}{2}\cos\left(2t - \frac{\pi}{2}\right) = \frac{1}{2}\cos\left(2\left(t - \frac{\pi}{4}\right)\right)$$

Example 2

Compute the amplitude and phase shift for the steady state solution to

$$y'' + 4y' + 4y = 2\cos(3t)$$

SOLUTION:

Complexify so that we have the following, and the steady state solution is the real part of the solution to:

$$y'' + 4y' + 4y = 2e^{3ti}$$

Substitute Ae^{3it} into the DE to get:

$$Ae^{3it}(-9+12i+4) = 2e^{3it} \Rightarrow A = \frac{2}{-5+12i}$$

The amplitude of the steady state is the amplitude of A:

$$A = \frac{2}{\sqrt{25 + 144}} = \frac{2}{\sqrt{169}} = \frac{2}{13}$$

The phase shift of the steady state is the polar angle of b (if A = 1/b), where we add π since the point (-5, 12) is in Quadrant II:

$$\delta = \tan^{-1}\left(-\frac{12}{5}\right) + \pi \approx 1.966 \text{ rad}$$

Example 3

Suppose that we have the damped oscillator model given by:

$$y'' + 2y' + 5y = \cos(\omega t)$$

Find the value of ω that maximize the amplitude of the response.

SOLUTION:

Ansatz is $y_p = Ae^{i\omega t}$, so that $y_p' = i\omega Ae^{i\omega t}$ and $y_p'' = -\omega^2 Ae^{i\omega t}$:

$$Ae^{i\omega t}(-\omega^2 + 2\omega i + 5) = e^{i\omega t} \quad \Rightarrow \quad A = \frac{1}{(5 - \omega^2) + 2\omega i} \quad \Rightarrow \quad |A| = \frac{1}{\sqrt{(5 - \omega^2)^2 + 4\omega^2}}$$

When we differentiate, we only need to work with what is inside the radical:

$$2(5 - \omega^2)(-2\omega) + 8\omega = 0 \quad \Rightarrow \quad \omega = \sqrt{3}$$

We've shown that the amplitude of the response is maximized when the circular frequency of the forcing function is given by $\omega = \sqrt{3}$.

Practice Problems, Section 4.4

Section 4.4 doesn't give you very many numerical problems, so try out the ones below to help you with the ideas and notation.

- 1. Find the amplitude and phase angle for the particular solution to: $y'' + 2y' + 3y = \cos(2t)$
- 2. Find the amplitude and phase angle for the particular solution to: $y'' + 3y' + 9y = \sin(2t)$
- 3. Find the particular solution to $y'' + 2y' + y = \cos(3t)$.
- 4. Find the particular solution to $y'' + \frac{1}{10}y' + 4y = \cos(2t)$
- 5. Show that, if $A = \frac{1}{\alpha + \beta i}$, then the real part of $Ae^{i\omega t}$ is given by:

$$\frac{\alpha}{\alpha^2 + \beta^2} \cos(\omega t) + \frac{\beta}{\alpha^2 + \beta^2} \sin(\omega t)$$

6. Use the shortcut from the previous exercise to find the particular solution to

$$y'' + 3y' + 4y = \cos(3t)$$

7. Recall that given $y'' + py' + qy = \cos(\omega t)$, and the ansatz $y_p = Ae^{i\omega t}$, we found that

$$A = \frac{1}{\sqrt{(q-\omega^2)^2 + p^2\omega^2}}.$$

- (a) Verify that the formula for A is correct (by substituting y_p into the DE).
- (b) Find a simplified expression for $\frac{dA}{d\omega} = 0$. Remember to use our hint from class.
- 8. Given $y'' + y' + 4y = \cos(\omega t)$, find the value of ω that will maximize the amplitude of the response.