Overview of Complex Numbers

1 Initial Definitions

Definition 1 The complex number z is defined as: $z=a+b i$, where a, b are real numbers and $i=\sqrt{-1}$.

General notes about $z=a+b i$

- Engineers typically use j instead of i.
- Examples of complex numbers: $5+2 i, \quad 3-\sqrt{2} i, \quad 3, \quad-5 i$
- Powers of i are cyclic: $i^{2}=-1, i^{3}=-i, i^{4}=1, i^{5}=i, i^{6}=-1$ and so on. Notice that the cycle is: $i,-1,-i, 1$, then it repeats.
- All real numbers are also complex (by taking $b=0$), so the set of real numbers is a subset of the complex numbers.

We can split up a complex number by using the real part and the imaginary part of the number z :

Definition: The real part of $z=a+b i$ is a, or in notation we write: $\operatorname{Re}(z)=\operatorname{Re}(a+b i)=a$
The imaginary part of $a+b i$ is b, or in notation we write: $\operatorname{Im}(z)=\operatorname{Im}(a+b i)=b$

2 Visualizing Complex Numbers

To visualize a complex number, we use the complex plane \mathbb{C}, where the horizontal (or x-) axis is for the real part, and the vertical axis is for the imaginary part. That is, $a+b i$ is plotted as the point (a, b).

In Figure 1, we can see that it is also possible to represent the point $a+b i$, or (a, b) in polar form, by computing its modulus (or size) r, and angle (or argument) θ as:

$$
r=|z|=\sqrt{a^{2}+b^{2}} \quad \theta=\arg (z)
$$

Once we do that, we can write:

$$
z=a+b i=r(\cos (\theta)+i \sin (\theta))
$$

We have to be a bit careful defining θ. For example, just adding a multiple of 2π will yield an equivalent number for θ. Typically, θ is defined to be the 4 -quadrant "inverse tangent" ${ }^{1}$ that returns $-\pi<\theta \leq \pi$.

That is, formally we can define the argument as the following, which looks more complicated than it actually is. Highly recommended: Draw the point $a+i b$ in the complex plane. Then θ is given by:

[^0]

Figure 1: Visualizing $z=a+b i$ in the complex plane. Shown are the modulus (or length) r and the argument (or angle) θ.

- If (a, b) is in Quadrant I or IV, $\theta=\tan ^{-1}(b / a)$.
- If (a, b) is on the upper vertical axis $(a=0)$, then $\theta=\pi / 2$.
- If (a, b) is on the lower vertical axis $(a=0)$, then $\theta=-\pi / 2$.
- If (a, b) is in Quadrant II or III, add $\pi: \theta=\tan ^{-1}(b / a)+\pi$.
- At the origin, θ is said to be undefined.

Examples

Find the modulus r and argument θ for the following numbers, then express z in polar form:

- $z=-3$:

SOLUTION: $r=3$ and $\theta=\pi$ so $z=3(\cos (\pi)+i \sin (\pi))$

- $z=2 i$:

SOLUTION: $r=2$ and $\theta=\pi / 2$ so $z=2(\cos (\pi / 2)+i \sin (\pi / 2))$

- $z=-1+i$:

SOLUTION: $r=\sqrt{2}$ and $\theta=\tan ^{-1}(-1)+\pi=-\frac{\pi}{4}+\pi=\frac{3 \pi}{4}$ so

$$
z=\sqrt{2}\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)
$$

- $z=-3-2 i$ (Numerical approx from Calculator OK):

SOLUTION: $r=\sqrt{14}$ and $\theta=\tan ^{-1}(2 / 3)-\pi \approx 0.588-\pi \approx-2.55 \mathrm{rad}$, or

$$
z=\sqrt{14}(\cos (-2.55)+i \sin (-2.55))=\sqrt{14}(\cos (2.55)-i \sin (2.55))
$$

Note to readers: We used the "even" symmetry of the cosine and the "odd" symmetry of the sine to do the simplification:

$$
\cos (-x)=\cos (x) \quad \text { and } \quad \sin (-x)=-\sin (x)
$$

3 Operations on Complex Numbers

3.1 The Conjugate of a Complex Number

If $z=a+b i$ is a complex number, then its conjugate, denoted by \bar{z} is $a-b i$. For example,

$$
z=3+5 i \Rightarrow \bar{z}=3-5 i \quad z=i \Rightarrow \bar{z}=-i \quad z=3 \Rightarrow \bar{z}=3
$$

Graphically, the conjugate of a complex number is it's mirror image across the horizontal axis. If z has magnitude r and $\operatorname{argument} \theta$, then \bar{z} has the same magnitude with a negative argument.

Example

If $z=3(\cos (\pi / 2)+i \sin (\pi / 2))$, find the conjugate \bar{z} :

$$
\bar{z}=3(\cos (-\pi / 2)+i \sin (-\pi / 2))=3(\cos (\pi / 2)-i \sin (\pi / 2))
$$

3.2 Addition/Subtraction, Multiplication/Division

To add (or subtract) two complex numbers, add (or subtract) the real parts and the imaginary parts separately. This is like adding polynomials (with i in place of x):

$$
(a+b i) \pm(c+d i)=(a+c) \pm(b+d) i
$$

To multiply, expand it as if you were multiplying polynomials, with i in place of x :

$$
(a+b i)(c+d i)=a c+a d i+b c i+b d i^{2}=(a c-b d)+(a d+b c) i
$$

and simplify using $i^{2}=-1$. A special product is often computed- A complex number with its conjugate:

$$
z \bar{z}=(a+b i)(a-b i)=a^{2}-a b i+a b i-b^{2} i^{2}=a^{2}+b^{2}=|z|^{2}
$$

Division by complex numbers $\frac{z}{w}$, is defined by translating it to real number division by rationalizing the denominator- multiply top and bottom by the conjugate of the denominator:

$$
\frac{z}{w}=\frac{z \bar{w}}{w \bar{w}}=\frac{z \bar{w}}{|w|^{2}}
$$

Example:

$$
\frac{1+2 i}{3-5 i}=\frac{(1+2 i)(3+5 i)}{(3-5 i)(3+5 i)}=\frac{(1+2 i)(3+5 i)}{3^{2}+5^{2}}=\frac{-7}{34}+\frac{11}{34} i
$$

4 The Polar Form of Complex Numbers

The polar form of a complex number,

$$
z=r \cos (\theta)+i r \sin (\theta)
$$

has a beautiful counterpart using the complex exponential function, $e^{i \theta}$. First, we'll define it using Euler's formula (although it is possible to prove Euler's formula).

Definition (Euler's Formula): $\mathrm{e}^{i \theta}=\cos (\theta)+i \sin (\theta)$.
We can now express the polar form of a complex number slightly differently:

$$
z=r \mathrm{e}^{i \theta} \quad \text { where } \quad r=|z|=\sqrt{a^{2}+b^{2}} \quad \theta=\arg (z)
$$

An important note about this expression: The rules of exponentiation still apply in the complex case. For example,

$$
\mathrm{e}^{a+i b}=\mathrm{e}^{a} \mathrm{e}^{i b} \quad \text { and } \quad \mathrm{e}^{i \theta} \mathrm{e}^{i \beta}=\mathrm{e}^{(\theta+\beta) i} \quad \text { and } \quad\left(\mathrm{e}^{i \theta}\right)^{n}=\mathrm{e}^{i n \theta}
$$

Furthermore, in the next section, we'll look at the logarithm.

Examples

Given the complex number in $a+b i$ form, give the polar form, and vice-versa:

1. $z=2 i$

SOLUTION: Since $r=2$ and $\theta=\pi / 2, z=2 \mathrm{e}^{i \pi / 2}$
2. $z=2 \mathrm{e}^{-i \pi / 3}$

SOLUTION: We recall that $\cos (\pi / 3)=1 / 2$ and $\sin (\pi / 3)=\sqrt{3} / 2$, so

$$
z=2(\cos (-\pi / 3)+i \sin (-\pi / 3))=2(\cos (\pi / 3)-i \sin (\pi / 3))=1-\sqrt{3} i
$$

5 Exponentials and Logs

The logarithm of a complex number is easy to compute if the number is in polar form. We use the normal rule of logs: $\ln (a b)=\ln (a)+\ln (b)$, or in the case of polar form:

$$
\ln (a+b i)=\ln \left(r \mathrm{e}^{i \theta}\right)=\ln (r)+\ln \left(\mathrm{e}^{i \theta}\right)=\ln (r)+i \theta
$$

Where we leave the last step as intuitively clear, but we don't prove it here (we have to be careful about the choice of θ as described earlier).

The logarithm of zero is left undefined (as in the real case). However, we can now compute things like the \log of a negative number!

$$
\ln (-1)=\ln \left(1 \cdot \mathrm{e}^{i \pi}\right)=i \pi \quad \text { or the } \log \text { of } i: \quad \ln (i)=\ln (1)+\frac{\pi}{2} i=\frac{\pi}{2} i
$$

To exponentiate a number, we convert it to multiplication (a trick we used in Calculus when dealing with things like x^{x}):

$$
a^{b}=\mathrm{e}^{b \ln (a)}
$$

Examples of Exponentiation

- $2^{i}=\mathrm{e}^{i \ln (2)}=\cos (\ln (2))+i \sin (\ln (2))$
- $\sqrt{1+i}=(1+i)^{1 / 2}=\left(\sqrt{2} \mathrm{e}^{i \pi / 4}\right)^{1 / 2}=\left(2^{1 / 4}\right) \mathrm{e}^{i \pi / 8}$
- $i^{i}=\mathrm{e}^{i \ln (i)}=\mathrm{e}^{i(i \pi / 2)}=\mathrm{e}^{-\pi / 2}$

6 Real Polynomials and Complex Numbers

If $a x^{2}+b x+c=0$, then the solutions come from the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In the past, we only took real roots. Now we can use complex roots. For example, the roots of $x^{2}+1=0$ are $x=i$ and $x=-i$.

Check:

$$
(x-i)(x+i)=x^{2}+x i-x i-i^{2}=x^{2}+1
$$

Some facts about polynomials when we allow complex roots:

1. An $n^{\text {th }}$ degree polynomial can always be factored into n roots. (Unlike if we only have real roots!) This is the Fundamental Theorem of Algebra.
2. If $a+b i$ is a root to a real polynomial, then $a-b i$ must also be a root. This is sometimes referred to as "roots must come in conjugate pairs".

7 Exercises

1. Suppose the roots to a cubic polynomial are $a=3, b=1-2 i$ and $c=1+2 i$. Compute $(x-a)(x-b)(x-c)$.
2. Find the roots to $x^{2}-2 x+10$. Write them in polar form.
3. Show that:

$$
\operatorname{Re}(z)=\frac{z+\bar{z}}{2} \quad \operatorname{Im}(z)=\frac{z-\bar{z}}{2 i}
$$

4. For the following, let $z_{1}=-3+2 i, z_{2}=-4 i$
(a) Compute $z_{1} \bar{z}_{2}, z_{2} / z_{1}$
(b) Write z_{1} and z_{2} in polar form.
5. In each problem, rewrite each of the following in the form $a+b i$:
(a) $\mathrm{e}^{1+2 i}$
(b) $\mathrm{e}^{2-3 i}$
(c) $e^{i \pi}$
(d) 2^{1-i}
(e) $\mathrm{e}^{2-\frac{\pi}{2} i}$
(f) π^{i}
6. For fun, compute the logarithm of each number:
(a) $\ln (-3)$
(b) $\ln (-1+i)$
(c) $\ln \left(2 \mathrm{e}^{3 i}\right)$

[^0]: ${ }^{1}$ For example, in Maple this special angle is computed as $\arctan (b, a)$, and in Matlab the command is $\operatorname{atan} 2(b, a)$.

