
Exam 2 Summary

The exam will cover material from Section 3.1 to 3.7 except for 3.6 (Variation of Parameters). Here is a
summary of that information.

Existence and Uniqueness:

Given the second order linear IVP,

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = v0

If there is an open interval I on which p, q, and g are continuous an contain t0, then there exists a unique
solution to the IVP, valid on I (and may contain the endpoints of I, if the functions are also continuous
there).

Structure and Theory (Mostly 3.2)

The homogeneous equation.

The goal of the theory was to establish the structure of solutions to the second order IVP. We start with the
homogeneous equation:

y′′ + p(t)y′ + q(t)y = 0, y(t0) = y0, y′(t0) = v0

The “principle of superposition” says that if y1, y2, · · · , yk are each a solution to the homogeneous equation,
then so is the linear combination:

c1y1 + c2y2 + · · ·+ ckyk

We further showed that for a second order linear homogeneous DE, we can write any solution using only
y1, y2, as long as W (y1, y2)(t0) 6= 0. In this case, y1, y2 form a fundamental set of solutions. This theory
was all possible because the differential equation is linear.

The full, forced equation: y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y
′(t0) = v0

If a solution exists to the IVP, then it can always be expressed in the following form:

y(t) = C1y1(t) + C2y2(t) + yp(t)

where y1, y2 form a fundamental set of solutions to the homogeneous equation, and yp(t) solves the non-
homogeneous equation.

In fact, if we have: y′′+ p(t)y′+ q(t)y = g1(t) + g2(t) + . . .+ gn(t),, we can solve by splitting the problem
up into smaller problems: Take yp1 to be the solution to y′′ + p(t)y′ + q(t)y = g1(t), then yp2 solves the DE
with g2(t) on the RHS, and so on, until ypn solves y′′ + p(t)y′ + q(t)y = gn(t). Then the full solution is:
y(t) = C1y1 + C2y2 + yp1 + yp2 + . . .+ ypn .

Abel’s Theorem

If y1, y2 are solutions to y′′+p(t)y′+q(t)y = 0, then the Wronskian, W (y1, y2), is either always zero or never
zero on the interval for which the solutions are valid.

That is because the Wronskian may be computed as:

W (y1, y2)(t) = Ce−
∫
p(t) dt

We can use Abel’s Theorem to either compute the Wronskian, or it can help use solve the differential
equation (if we have y1, we can find y2 by computing W two ways, explained below).
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Finding the Homogeneous Solution

We had two distinct equations to solve-

ay′′ + by′ + cy = 0 or y′′ + p(t)y′ + q(t)y = 0

First we look at the case with constant coefficients, then we look at the more general case.

Constant Coefficients

To solve
ay′′ + by′ + cy = 0

we use the ansatz y = ert. Then we form the associated characteristic equation:

ar2 + br + c = 0 ⇒ r =
−b±

√
b2 − 4ac

2a

so that the solutions depend on the discriminant, b2 − 4ac in the following way:

• b2 − 4ac > 0⇒ two distinct real roots r1, r2. The general solution is:

yh(t) = c1er1t + c2er2t

If a, b, c > 0 (as in the Spring-Mass model) we can further say that r1, r2 are negative. We would say
that this system is OVERDAMPED.

• b2 − 4ac = 0⇒ one real root r = −b/2a. Then the general solution is:

yh(t) = e−(b/2a)t (C1 + C2t)

If a, b, c > 0 (as in the Spring-Mass model), the exponential term has a negative exponent. In this case
(one real root), the system is CRITICALLY DAMPED.

• b2 − 4ac < 0⇒ two complex conjugate solutions, r = α± iβ. Then the solution is:

yh(t) = eαt (C1 cos(βt) + C2 sin(βt))

If a, b, c > 0, then α = −(b/2a) < 0. In the case of complex roots, the system is said to the UNDER-
DAMPED. If α = 0 (this occurs when there is no damping), we get pure periodic motion, with period
2π/β or circular frequency β.

Solving the general homogeneous equation.

We had two methods for solving the more general equation:

y′′ + p(t)y′ + q(t)y = 0

but each method relied on already having one solution, y1(t). Given that situation, we can solve for y2 (so
that y1, y2 form a fundamental set), by one of two methods:

• By use of the Wronskian: There are two ways to compute this,

– W (y1, y2) = Ce−
∫
p(t) dt (This is from Abel’s Theorem)

– W (y1, y2) = y1y
′
2 − y2y′1

Therefore, these are equal, and y2 is the unknown: y1y
′
2 − y2y′1 = Ce−

∫
p(t) dt

• Reduction of order, where y2 = v(t)y1(t). Now substitute y2 into the DE, and use the fact that y1
solves the homogeneous equation, and the DE reduces to:

y1v
′′ + (2y′1 + py1)v′ = 0
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Finding the particular solution.

Our two methods were: Method of Undetermined Coefficients and Variation of Parameters (but Variation
of Parameters won’t be on the exam).

Method of Undetermined Coefficients

This method is motivated by the observation that, a linear operator of the form L(y) = ay′′+by′+cy, acting
on certain classes of functions, returns the same class. In summary, the table from the text:

if gi(t) is: The ansatz ypi is:
Pn(t) ts(a0 + a1t+ . . . ant

n)
Pn(t)eαt tseαt(a0 + a1t+ . . .+ ant

n)
Pn(t)eαt sin(µt) or cos(µt) tseαt ((a0 + a1t+ . . .+ ant

n) sin(µt)
+ (b0 + b1t+ . . .+ bnt

n) cos(µt))

The ts term comes from an analysis of the homogeneous part of the solution. That is, multiply by t or t2 so
that no term of the ansatz is included as a term of the homogeneous solution.

Note that if we have periodic forcing, we can “complexify” the problem and make it easier to solve. For
example,

ay′′ + by′ + cy = cos(ωt) → ay′′ + by′ + cy = cos(ωt) + i sin(ωt) = eiωt

And then we use the guess for the exponential, yp = Aeiωt.

Analysis of the Oscillator Model (3.7-3.8)

Given
mu′′ + γu′ + ku = F cos(ωt)

we should be able to determine the constants from a given setup for a spring-mass system. Once that’s done,
be able to analyze the spring-mass system in some particular cases:

1. Unforced (The homogeneous equation, F = 0)

(a) No damping: Natural frequency is
√
k/m.

(b) With damping: Underdamped, Critically Damped, Overdamped: These correspond to complex
roots, equal roots, and two distinct real roots to the characteristic equation (respectively).

2. Periodic Forcing (Stop here for Exam 2).
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