## Sample Questions (Chapter 3, Math 244)

1. True or False?
(a) The characteristic equation for $y^{\prime \prime}+y^{\prime}+y=1$ is $r^{2}+r+1=1$
(b) The characteristic equation for $y^{\prime \prime}+x y^{\prime}+\mathrm{e}^{x} y=0$ is $r^{2}+x r+\mathrm{e}^{x}=0$
(c) The function $y=0$ is always a solution to a second order linear homogeneous differential equation.
(d) In using the Method of Undetermined Coefficients, the ansatz
$y_{p}=\left(A x^{2}+B x+C\right)(D \sin (x)+E \cos (x))$ is equivalent to

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (x)+\left(D x^{2}+E x+F\right) \cos (x)
$$

(e) Consider the function:

$$
y(t)=\cos (t)-\sin (t)
$$

Then amplitude is 1 , the period is 1 and the phase shift is 0 .
2. Find values of $a$ for which any solution to:

$$
y^{\prime \prime}+10 y^{\prime}+a y=0
$$

will tend to zero (that is, $\lim _{t \rightarrow 0} y(t)=0$.
3. - Compute the Wronskian between $f(x)=\cos (x)$ and $g(x)=1$.

- Can these be two solutions to a second order linear homogeneous differential equation? Be specific. (Hint: Abel's Theorem)

4. Construct the operator associated with the differential equation: $y^{\prime}=y^{2}-4$. Is the operator linear? Show that your answer is true by using the definition of a linear operator.
5. (i) Solve: $u^{\prime \prime}+\omega_{0}^{2} u=F_{0} \cos (\omega t), \quad u(0)=0 \quad u^{\prime}(0)=0$ if $\omega \neq \omega_{0}$ using the Method of Undetermined Coefficients. (ii) Repeat the problem if $\omega=\omega_{0}$.
6. Given that $y_{1}=\frac{1}{t}$ solves the differential equation:

$$
t^{2} y^{\prime \prime}-2 y=0
$$

Find a fundamental set of solutions using Abel's Theorem.
7. Suppose a mass of 0.01 kg is suspended from a spring, and the damping factor is $\gamma=0.05$. If there is no external forcing, then what would the spring constant have to be in order for the system to critically damped? underdamped?
8. Give the full solution, using any method(s). If there is an initial condition, solve the initial value problem.
(a) $y^{\prime \prime}+2 y^{\prime}+2 y=0$.
(d) $y^{\prime \prime}-2 y^{\prime}+y=t \mathrm{e}^{t}+4, y(0)=1, y^{\prime}(0)=1$.
(b) $u^{\prime \prime}+u=3 t+4, u(0)=0, u^{\prime}(0)=0$
(e) $y^{\prime \prime}+y^{\prime}-2 y=4 t$
(c) $y^{\prime \prime}+4 y^{\prime}+4 y=\mathrm{e}^{-2 t}$
(f) $4 y^{\prime \prime}-4 y^{\prime}+y=16 \mathrm{e}^{t}$
9. For each problem below, write the form of $y_{p}(t)$ using the Method of Undetermined Coefficients, but do NOT solve for the coefficients.
(a) $y^{\prime \prime}+2 y^{\prime}+2 y=t \mathrm{e}^{-t}(1+\sin (t))$
(b) $y^{\prime \prime}+2 y^{\prime}=2 t^{4}+\sin (2 t)$
(c) $y^{\prime \prime}+4 y=t^{2} \sin (2 t)$
10. Solve for $y_{p}$ only by complexifying the problem first:
(a) $y^{\prime \prime}+2 y^{\prime}+3 y=\cos (2 t)$
(b) $y^{\prime \prime}-y^{\prime}+3 y=\cos (3 t)$
(c) $y^{\prime \prime}+9 y=\sin (2 t)$
11. Rewrite the expression in the form $a+i b$ : (i) $2^{i-1}$ (ii) $\mathrm{e}^{(3-2 i) t}$ (iii) $\mathrm{e}^{i \pi}$
12. Write $a+i b$ in polar form: (i) $-1-\sqrt{3} i$ (ii) $3 i$ (iii) -4 (iv) $\sqrt{3}-i$
13. Write each function as $R \cos (\omega t-\delta)$ for an appropriate $R, \delta$.
(a) $f(t)=\cos (3 t)-\sqrt{3} \sin (3 t)$
(b) $h(t)=-\sqrt{3} \cos (3 t)+\sin (3 t)$
(c) $g(t)=\cos (t)+\sin (t)$
14. Find a second order linear differential equation with constant coefficients whose general solution is given by:

$$
y(t)=C_{1}+C_{2} \mathrm{e}^{-t}+\frac{1}{2} t^{2}-t
$$

15. Determine the longest interval for which the IVP is certain to have a unique solution (Do not solve the IVP):

$$
t(t-4) y^{\prime \prime}+3 t y^{\prime}+4 y=2 \quad y(3)=0 \quad y^{\prime}(3)=-1
$$

16. Let $L(y)=a y^{\prime \prime}+b y^{\prime}+c y$ for some value(s) of $a, b, c$. If $L\left(3 \mathrm{e}^{2 t}\right)=-9 \mathrm{e}^{2 t}$ and $L\left(t^{2}+3 t\right)=5 t^{2}+3 t-16$, what is the particular solution to:

$$
L(y)=-10 t^{2}-6 t+32+\mathrm{e}^{2 t}
$$

17. Compute the Wronskian of two solutions of the given DE without solving it:

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\alpha^{2}\right) y=0
$$

18. If $y^{\prime \prime}-y^{\prime}-6 y=0$, with $y(0)=1$ and $y^{\prime}(0)=\alpha$, determine the value(s) of $\alpha$ so that the solution tends to zero as $t \rightarrow \infty$.
19. A mass of 0.5 kg stretches a spring an additional 0.05 meters to get to equilibrium. (i) Find the spring constant. (ii) Does a stiff spring have a large spring constant or a small spring constant (explain).
20. A mass of $\frac{1}{2} \mathrm{~kg}$ is attached to a spring with spring constant $2\left(\mathrm{~kg} / \mathrm{sec}^{2}\right)$. The spring is pulled down an additional 1 meter then released. Find the equation of motion if the damping constant is $c=2$ as well:
21. Match the solution curve to its IVP (There is one DE with no graph, and one graph with no DE- You should not try to completely solve each DE).
(a) $5 y^{\prime \prime}+y^{\prime}+5 y=0, y(0)=10, y^{\prime}(0)=0$
(d) $5 y^{\prime \prime}+5 y=4 \cos (t), y(0)=0, y^{\prime}(0)=0$
(b) $y^{\prime \prime}+5 y^{\prime}+y=0, y(0)=10, y^{\prime}(0)=0$
(c) $y^{\prime \prime}+y^{\prime}+\frac{5}{4} y=0, y(0)=10, y^{\prime}(0)=0$
(e) $y^{\prime \prime}+\frac{1}{2} y^{\prime}+2 y=10, y(0)=0, y^{\prime}(0)=0$

