
Sample Question Solutions (Chapter 3, Math 244)

1. True or False?

(a) The characteristic equation for y′′ + y′ + y = 1 is r2 + r + 1 = 1

SOLUTION: False. The characteristic equation is for the homogeneous equation,
r2 + r + 1 = 0

(b) The characteristic equation for y′′ + xy′ + exy = 0 is r2 + xr + ex = 0

SOLUTION: False. The characteristic equation was defined only for DEs with
constant coefficients, since our ansatz depended on constant coefficients.

(c) The function y = 0 is always a solution to a second order linear homogeneous
differential equation.

SOLUTION: True. It is true generally- If L is a linear operator, then L(0) = 0.

(d) In using the Method of Undetermined Coefficients, the ansatz yp = (Ax2 +Bx+
C)(D sin(x) + E cos(x)) is equivalent to

yp = (Ax2 +Bx+ C) sin(x) + (Dx2 + Ex+ F ) cos(x)

SOLUTION: False- We have to be able to choose the coefficients for each poly-
nomial (for the sine and cosine) independently of each other. In the form:

(Ax2 +Bx+ C)(D sin(x) + E cos(x))

the polynomials for the sine and cosine are constant multiples of each other, which
may not necessarily hold true. That’s why we need one polynomial for the sine,
and one for the cosine (so the second guess is the one to use).

(e) Consider the function:
y(t) = cos(t)− sin(t)

Then amplitude is 1, the period is 1 and the phase shift is 0.

SOLUTION: False. For this question to make sense, we have to first write the
function as R cos(ωt− δ). In this case, the amplitude is R:

R =
√

12 + (−1)2 =
√

2

The period is 2π (the circular frequency, or natural frequency, is 1), and the phase
shift δ is:

tan(δ) = −1 ⇒ δ = −π
4

2. Find values of a for which any solution to:

y′′ + 10y′ + ay = 0

will tend to zero (that is, limt→∞ y(t) = 0.



SOLUTION: Use the characteristic equation and check the 3 cases (for the discrimi-
nant). That is,

r2 + 10r + a = 0 ⇒ r =
−10±

√
100− 4a

2

We check some special cases:

• If 100− 4a = 0 (or a = 25), we get a double root, r = −5,−5, or yh = e−5t(C1 +
C2t), and all solutions tend to zero.

• If the roots are complex, then we can write r = −5± βi, and we get

yh = e−5t(C1 cos(βt) + C2 sin(βt))

and again, this will tend to zero for any choice of C1, C2.

• In the case that a < 25, we have to be a bit careful. While it is true that both
roots will be real, we also want them to both be negative for all solutions to tend
to zero.

– When will they both be negative? If 100 − 4a < 100 (or
√

100− 4a < 10).
This happens as long as a > 0.

– If a = 0, the roots will be r = −10, 0, and yh = C1e
−10t + C2- Therefore, I

could choose C1 = 0 and C2 6= 0, and my solution will not go to zero.

– If a < 0, the roots will be mixed in sign (one positive, one negative), so the
solutions will not all tend to zero.

CONCLUSION: If a > 0, all solutions to the homogeneous will tend to zero.

Side Remark: You might recall that we showed that, if a, b, c > 0, then all solutions to
ay′′ + by′ + cy = 0 go to zero as t→∞, no matter the initial conditions.

3. • Compute the Wronskian between f(x) = cos(x) and g(x) = 1.

SOLUTION: W (cos(x), 1) = sin(x)

• Can these be two solutions to a second order linear homogeneous differential
equation? Be specific. (Hint: Abel’s Theorem)

SOLUTION: Abel’s Theorem tells us that the Wronskian between two solutions
to a second order linear homogeneous DE will either be identically zero or never
zero on the interval on which the solution(s) are defined.

Therefore, as long as the interval for the solutions do not contain a multiple of
π (for example, (0, π), (π, 2π), etc), then it is possible for the Wronskian for two
solutions to be sin(x).

4. Construct the operator associated with the differential equation: y′ = y2 − 4. Is the
operator linear? Show that your answer is true by using the definition of a linear
operator.



SOLUTION: The operator is found by getting all terms in y to one side of the equation,
everything else on the other. In this case, we have:

L(y) = y′ − y2

This is not a linear operator. We can check using the definition:

L(cy) = cy′ − c2y2 6= cL(y)

Furthermore,

L(y1 + y2) = (y′1 + y′2)− (y1 + y2)
2 6= L(y1) + L(y2)

5. Solving the undamped, periodically forced equation two ways:

(a) Solve: u′′ + ω2
0u = F0 cos(ωt), u(0) = 0 u′(0) = 0 if ω 6= ω0 using the Method

of Undetermined Coefficients.

SOLUTION: The characteristic equation is: r2 +ω2
0 = 0, or r = ±ω0i. Therefore,

uh = C1 cos(ω0t) + C2 sin(ω0t)

Using the Method of Undetermined Coefficients, up = Aeiωt. Substitution into
the DE:

−ω2Aeiωt + ω2
0Aeiωt = F0e

iωt ⇒ A =
F0

ω2
0 − ω2

This expression is real, so the particular solution is this constant times the cosine.
Putting it all together so far, the general solution is

u(t) = C1 cos(ω0t) + C2 sin(ω0t) +
F0

ω2
0 − ω2

cos(ωt)

Put in the initial conditions u(0) = 0 and u′(0) = 0 to see that C1 = − F0

ω2
0−ω2 and

C2 = 0 so that

u(t) =
F0(cos(ωt)− cos(ω0t)

ω2
0 − ω2

(b) Compute the solution to: u′′ + ω2
0u = F0 cos(ω0t) u(0) = 0 u′(0) = 0 with

Method of Undetermined Coefficients

SOLUTION: Let up = Ateiω0t. Then

u′p = Aeiω0t + iω0Ate
iω0t u′′p = 2iω0Aeiω0t − ω2

0Ate
iω0t

Now,

u′′p + ω2
0up = 2iωAeiωt = F0e

iω0t ⇒ A =
F0

2iω0

= − F0

2ω0

i



We want the real part of Ateiω0t:

Ateiω0 t = − F0

2ω0

it(cos(ω0 t) + i sin(ω0t))

which we see is:

up =
F0

2ω0

t sin(ω0 t)

Putting it all together,

u(t) = C1 cos(ω0t) + C2 sin(ω0t) +
F0

2ω0

t sin(ω0t)

Now, u(0) = 0 means that C1 = 0. Differentiating for the second IC,

u′ = ω0C2 cos(ω0 t) +
F0

2ω0

sin(ω0t) +
F0ω0

2ω0

t cos(ω0t)

In this case, C2 = 0 as well, so the particular solution is the full solution.

6. Given that y1 = 1
t

solves the differential equation:

t2y′′ − 2y = 0

Find a fundamental set of solutions using Abel’s Theorem:

SOLUTION: First, rewrite the differential equation in standard form:

y′′ − 2

t2
y = 0

Then p(t) = 0 and W (y1, y2) = Ce0 = C. On the other hand, the Wronskian is:

W (y1, y2) =
1

t
y′2 +

1

t2
y2

Put these together:
1

t
y′2 +

1

t2
y2 = C y′2 +

1

t
y2 = Ct

The integrating factor is t,

(ty2)
′ = Ct2 ⇒ ty2 = C1t

3 + C2 ⇒ C1t
2 +

C2

t

Notice that we have both parts of the homogeneous solution, y1 = 1
t

and y2 = t2.



7. Suppose a mass of 0.01 kg is suspended from a spring, and the damping factor is
γ = 0.05. If there is no external forcing, then what would the spring constant have to
be in order for the system to critically damped? underdamped?

SOLUTION: We can find the differential equation:

0.01u′′ + 0.05u′ + ku = 0 ⇒ u′′ + 5u′ + 100ku = 0

Then the system is critically damped if the discriminant (from the quadratic formula)
is zero:

b2 − 4ac = 25− 4 · 100k = 0 ⇒ k =
25

400
=

1

16

The system is underdamped if the discriminant is negative:

25− 400k < 0 ⇒ k >
1

16

8. Give the full solution, using any method(s). If there is an initial condition, solve the
initial value problem.

(a) y′′ + 2y′ + 2y = 0

SOLUTION: The char eqn is given by r2 + 2r + 2 = 0. Since b2 − 4ac < 0, we
complete the square:

r2 + 2r = −2 → r2 + 2r + 1 = −1 → (r + 1)2 = −1 → r = −1± i

Therefore, y(t) = e−t(C1 cos(t) + C2 sin(t))

(b) u′′ + u = 3t+ 4, zero ICs.

SOLUTION: We see that yh(t) = C1 cos(t) + C2 sin(t), and yp(t) = At + B (by
Method of Undet Coeffs). Substituting,

At+B = 3t+ 4 ⇒ A = 3, B = 4

The solution thus far is C1 cos(t) +C2 sin(t) + 3t+ 4. Using the inital conditions,

u(0) = 0 ⇒ 0 = C1 + 4 ⇒ C1 = −4

u′(0) = 0 ⇒ 0 = C2 + 3

Therefore,
u(t) = −4 cos(t)− 3 sin(t) + 3t+ 4

(c) y′′ + 4y′ + 4y = e−2t

SOLUTUION: We see that

yh(t) = C1e
−2t + C2te

−2t



so that (in putting down our guess, multiply by t2):

yp = At2e−2t

Substituting this into the DE, we should find that A = 1/2, so that the full
solution is

y(t) = C1e
−2t + C2te

−2t +
1

2
t2e−2t

(d) y′′ − 2y′ + y = tet + 4, y(0) = 1, y′(0) = 1.

With the Method of Undetermined Coefficients, we first get the homogeneous
part of the solution,

yh(t) = et(C1 + C2t)

Now we construct our ansatz (Multiplied by t after comparing to yh):

g1 = tet ⇒ yp1 = (At+B)et · t2

Substitute this into the differential equation to solve for A,B:

yp1 = (At3 +Bt2)et y′p1 = (At3 + (3A+B)t2 + 2Bt)et

y′′p1 = (At3 + (6A+B)t2 + (6A+ 4B)t+ 2B)et

Forming y′′p1 − 2y′p1 + yp1 = tet, we should see that A = 1
6

and B = 0, so that
yp1 = 1

6
t3et.

The next one is a lot easier! yp2 = A, so A = 4, and:

y(t) = et(C1 + C2t) +
1

6
t3et + 4

with y(0) = 1, C1 = −3. Solving for C2 by differentiating should give C2 = 4.
The full solution:

y(t) = et
(

1

6
t3 + 4t− 3

)
+ 4

(e) y′′ + y′ − 2y = 4t.

Characteristic equation: r2 + r − 2 = 0, or (r + 2)(r − 1) = 0, so r = 1,−4.
Therefore,

yh(t) = C1e
t + C2e

−4t

And we’ll guess that yp = At+B, so y′p = A and y′′p = 0, so

A− 2(At+B) = 4t
−2A = 4

A− 2B = 0
A = −2, B = −1

Therefore, y(t) = C1e
t + C2e

−4t − 2t− 1



(f) 4y′′ − 4y′ + y = 16et

SOLUTION: The characteristic equation:

4r2−4r+1 = 0 → 4(r2−r) = −1 → 4
(
r2 − r +

1

4

)
= 0 → r =

1

2
,
1

2

For yp = Aet, then 4Aet − 4Aet + Aet = 16et, so A = 16 and the full solution

y(t) = et/2(C1 + C2t) + 16et

9. For each problem below, write the form of yp(t) using the Method of Undetermined
Coefficients, but do NOT solve for the coefficients.

(a) y′′ + 2y′ + 2y = te−t(1 + sin(t))

SOLUTION: The roots to the characteristic equation are: r2 + 2r + 2 = 0, or
r2 + 2r + 1 = −1, or r = −1 ± i. That means the solution to the characteristic
equation uses functions e−t cos(t) and e−t sin(t).

For the particular solution, let’s multiply things out: F (t) = te−t + te−t sin(t) =
g1(t) + g2(t).

• For g1(t) = te−t, we guess: yp1(t) = (At+B)e−t

• For g2(t) = te−t sin(t), we guess: yp2(t) = e−t[(At+B) cos(t)+(Ct+D) sin(t)].
We have to multiply that by t because they overlap with our homogeneous
solutions:

yp2(t) = te−t[(At+B) cos(t) + (Ct+D) sin(t)]

(b) y′′ + 2y′ = 2t4 + sin(2t)

SOLUTION: For the homogeneous equation, we have r2 + 2r = 0, or r = 0,−2.
Therefore, y1 = 1 and y2 = e−2t. Break apart the forcing function as we did last
time:

• For g1(t) = 2t4, we guess yp1(t) = At4 + Bt3 + Ct2 + Dt + E. Notice that
y1 = 1 is a constant term, and here E is a constant term, so we have to
multiply our guess by t:

yp1(t) = t(At4 +Bt3 + Ct2 +Dt+ E)

• For g2(t) = sin(2t), we guess yp2(t) = A cos(2t) +B sin(2t).

(c) y′′+4y = t2 sin(2t) SOLUTION: For the homogeneous equation, we have r2 +4 =
0, or r = ±2i. Therefore, y1 = cos(2t) and y2 = sin(2t). Now for the particular
solution, we have a polynomial of degree 2 times the sine, so we guess:

yp = (At2 +Bt+ C) cos(2t) + (Ct2 +Dt+ E) sin(2t)

But this includes the homogeneous solution, so multiply it by t:

yp = t[(At2 +Bt+ C) cos(2t) + (Ct2 +Dt+ E) sin(2t)]



10. Solve for yp only by complexifying the problem first:

(a) y′′ + 2y′ + 3y = cos(2t)

SOLUTION: y′′ + 2y′ + 3y = e2it, so yp = Ae2it and if we substitute this into the
DE, we can factor out Ae2it and get

Ae2it(−4 + 2(2i) + 3) = e2it ⇒ A =
1

−1 + 4i

The particular solution is then the real part of Ae2it, which we found to be:

yp =
−1

12 + 42
cos(2t) +

4

12 + 42
sin(2t) =

−1

17
cos(2t) +

4

17
sin(2t)

(b) y′′ − y′ + 3y = cos(3t)

SOLUTION: Same technique as before, with yp = Ae3it

Ae3it(−9− (3i) + 3) = e3it ⇒ A =
1

−6− 3i

The particular part of the solution is therefore:

yp(t) =
−6

62 + 32
cos(3t) +

−3

62 + 32
sin(3t) = − 6

45
cos(3t)− 3

45
sin(3t)

(c) y′′ + 9y = sin(2t)

SOLUTION: We start the same as before, but then we take the imaginary part
of Ae2it.

Ae2it(−4 + 9) = e2it ⇒ A =
1

−5

Now, Ae2it is easy to compute since A is a real number. We want the imaginary
part:

Ae2it =
−1

5
(cos(2t) + i sin(2t)) ⇒ yp(t) = −1

5
sin(2t)

11. Rewrite the expression in the form a+ ib: (i) 2i−1 (ii) e(3−2i)t (iii) eiπ

NOTE for the SOLUTION: Remember that for any non-negative number A, we can
write A = eln(A).

• 2i−1 = eln(2
i−1) = e(i−1) ln(2) = e− ln(2)ei ln(2) = 1

2
(cos(ln(2)) + i sin(ln(2)))

• e(3−2i)t = e3te−2ti = e3t (cos(−2t) + i sin(−2t)) = e3t (cos(2t)− i sin(2t))

(Recall that cosine is an even function, sine is an odd function).

• eiπ = cos(π) + i sin(π) = −1



12. Write a+ ib in polar form: (i) −1−
√

3i (ii) 3i (iii) −4 (iv)
√

3− i
SOLUTIONS:

(i) r =
√

1 + 3 = 2, θ = −2π/3 (look at its graph, use 30-60-90 triangle):

−1−
√

3i = 2e−
2π
3
i

(ii) 3i = 3e
π
2
i

(iii) −4 = 4eπi

(iv)
√

3− i = 2e−
π
6
i

13. Write each function as R cos(ωt− δ) for an appropriate R, δ.

(a) f(t) = cos(3t)−
√

3 sin(3t)

SOLUTION: R =
√

12 + (
√

3
2

= 2. For the angle, think about the point being

1−
√

3i, so that the angle is in the 4th quadrant (we won’t need to add π). Further,
we might recognize that the angle will be coming from the 30-60-90 triangle (with
side lengths 1-2-

√
3), so sketching that triangle will give you:

δ = tan−1(−
√

3/1) = −π/3

Therefore,
cos(3t)−

√
3 sin(3t) = 2 cos(3t+ π/3)

(b) h(t) = −
√

3 cos(3t) + sin(3t)

Same technique as before, but note that −
√

3 + i is in quadrant II, so we need to
add π to the inverse tangent.

δ = tan−1(−1/
√

3) + π = −π/6 + π = 5π/6

Now,
−
√

3 cos(3t) + sin(3t) = 2 cos(3t− 5π/6)

(c) g(t) = cos(t) + sin(t)

cos(t) + sin(t) =
√

2 cos(t− π/4)

14. Find a second order linear differential equation with constant coefficients whose general
solution is given by:

y(t) = C1 + C2e
−t +

1

2
t2 − t

SOLUTION: Work backwards from the characteristic equation to build the homoge-
neous DE (then figure out the rest):



The roots to the characteristic equation are r = 0 and r = −1. The characteristic equa-
tion must be r(r + 1) = 0 (or a constant multiple of that). Therefore, the differential
equation is:

y′′ + y′ = 0

For yp = 1
2
t2 − t to be the particular solution,

y′′p + y′p = (1) + (t− 1) = t

so the full differential equation must be:

y′′ + y′ = t

15. Determine the longest interval for which the IVP is certain to have a unique solution
(Do not solve the IVP):

t(t− 4)y′′ + 3ty′ + 4y = 2 y(3) = 0 y′(3) = −1

SOLUTION: Write in standard form first-

y′′ +
3

t− 4
y′ +

4

t(t− 4)
y =

2

t(t− 4)

The coefficient functions are all continuous on each of three intervals:

(−∞, 0), (0, 4) and (4,∞)

Since the initial time is 3, we choose the middle interval, (0, 4).

16. Let L(y) = ay′′ + by′ + cy for some value(s) of a, b, c.

If L(3e2t) = −9e2t and L(t2 + 3t) = 5t2 + 3t− 16, what is the particular solution to:

L(y) = −10t2 − 6t+ 32 + e2t

SOLUTION: This purpose of this question is to see if we can use the properties of
linearity to get at the answer.

We see that: L(3e2t) = −9e2t, or L(e2t) = −3e2t so:

L
(
−1

3
e2t
)

= e2t

And for the second part,

L(t2 + 3t) = 5t2 + 3t− 16 ⇒ L((−2)(t2 + 3t)) = −10t2 + 6t− 32

The particular solution is therefore:

yp(t) = −2(t2 + 3t)− 1

3
e2t

since we have shown that

L
(
−2(t2 + 3t)− 1

3
e2t
)

= −10t2 + 6t− 32 + e2t



17. Compute the Wronskian of two solutions of the given DE without solving it:

x2y′′ + xy′ + (x2 − α2)y = 0

Using Abel’s Theorem (and writing the DE in standard form first):

y′′ +
1

x
y′ +

x2 − α2

x2
y = 0

Therefore,

W (y1, y2) = Ce−
∫

1
x
dx =

C

x

18. If y′′ − y′ − 6y = 0, with y(0) = 1 and y′(0) = α, determine the value(s) of α so that
the solution tends to zero as t→∞.

SOLUTION: Solving as usual gives:

y(t) =
(

3− α
5

)
e−2t +

(
α + 2

5

)
e3t

so to make sure the solutions tend to zero, α = −2 (to zero out the second term).

19. A mass of 0.5 kg stretches a spring an additional 0.05 meters to get to equilibrium.
(i) Find the spring constant. (ii) Does a stiff spring have a large spring constant or a
small spring constant (explain).

SOLUTION:

We use Hooke’s Law at equilibrium: mg − kL = 0, or

k =
mg

L
=

4.9

0.05
= 98

For the second part, a stiff spring will not stretch, so L will be small (and k would
therefore be large), and a spring that is not stiff will stretch a great deal (so that k
will be smaller).

20. A mass of 1
2

kg is attached to a spring with spring constant 2 (kg/sec2). The spring is
pulled down an additional 1 meter then released. Find the equation of motion if the
damping constant is c = 2 as well:

SOLUTION: Just substitute in the values

1

2
u′′ + 2u′ + 2u = 0

Pulling down the spring and releasing: u(0) = 1, u′(0) = 0 (Down is positive)



21. Match the solution curve to its IVP (There is one DE with no graph, and one graph
with no DE- You should not try to completely solve each DE).

(a) 5y′′ + y′ + 5y = 0, y(0) = 10, y′(0) = 0 (Complex roots, solutions go to zero)

(b) y′′ + 5y′ + y = 0, y(0) = 10, y′(0) = 0 (Exponentials, solutions go to zero)

(c) y′′ + y′ + 5
4
y = 0, y(0) = 10, y′(0) = 0

(d) 5y′′ + 5y = 4 cos(t), y(0) = 0, y′(0) = 0

(e) y′′ + 1
2
y′ + 2y = 10, y(0) = 0, y′(0) = 0

SOLUTION:

There are three graphs going through (10, 0) and two going through (0, 0), so that
should help you classify them. Of the three going through (10, 0), we see one graph that
is purely periodic (no damping), one that oscillates and decays to zero (underdamped),
and one that goes fairly quickly to zero (probably overdamped). Equations (a) and
(c) are both candidates for the underdamped graph- I meant for them to be more
different (Sorry!). You can see from the graph that the “pseudoperiod” is 2π, which
would correspond to (c) (For this exam, I won’t go this in depth). The first graph will
correspond to equation (4), where the particular part of the solution would have to
be yp = t(A cos(t) + B sin(t), so the solution “blows up”. The second graph (purely
periodic) is not used by any of the equations.


