Math 244: Homework To Replace 7.1

1. If $x(t)$ and $y(t)$ are plotted below (versus time), plot the graph in the $x y$-plane. (Hint: You might think about some specific points in the $x y$-plane). Remember that at $t=-2$, you're starting all the way to the left, and at $t=2$, you're all the way to the right (in the t-plane). You may assume that the x-coordinate is the parabola.

2. Exercise 22 (Section 7.1, p 363, tank mixing)
3. Solve the system of equations given by first converting it into a second order linear ODE (then use Chapter 3 methods):
(a) $\begin{aligned} & x^{\prime}=-2 x+y \\ & y^{\prime}=x-2 y\end{aligned}$
(b) $\begin{array}{ll}x^{\prime} & =2 y \\ y^{\prime} & =-2 x\end{array}$
4. Give the solution to each system of equations. If it has an infinite number of solutions, give your answer in vector form:

$$
\begin{array}{rlrl}
3 x+2 y & =1 & 3 x+2 y=1 & 3 x+2 y=1 \\
2 x-y & =3 & 6 x+4 y=3 & 6 x+4 y=2
\end{array}
$$

5. Let A, B be the matrices below. Compute the matrix operation listed.

$$
A=\left[\begin{array}{rr}
1 & -2 \\
2 & 3
\end{array}\right] \quad B=\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

(a) $2 A+B^{T}$
(b) $B A$
(c) A^{-1}
6. Vectors and matrices might have complex numbers. If $z=3+2 i$ and vector $\mathbf{v}=$ $[1+i, 2-2 i]^{T}$, then find the real part and the imaginary part of $z \mathbf{v}$.
7. Adding two vectors: Geometrically (and numerically) compute the following, where $\mathbf{u}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Be sure to draw each vector out, and see if you can see a pattern.
(a) $\mathbf{u}+\mathbf{v}$
(b) $\mathbf{u}-2 \mathbf{v}$
(c) $\mathbf{u}+\frac{1}{2} \mathbf{v}$
(d) $-\mathbf{u}+\mathbf{v}$
8. Verify that $\mathbf{x}_{1}(t)$ below satisfies the DE: $\mathbf{x}^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right] \mathbf{x}, \quad \mathbf{x}_{1}(t)=\mathrm{e}^{3 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$
9. Consider

$$
\begin{aligned}
x^{\prime} & =2 x+3 y+1 \\
y^{\prime} & =x-y-2
\end{aligned}
$$

First find the equilibrium solution, x_{e}, y_{e}. Then show that, if $u=x-x_{e}$ and $v=y-y_{e}$, then

$$
\begin{aligned}
u^{\prime} & =2 u+3 v \\
v^{\prime} & =u-v
\end{aligned}
$$

10. The four graphs in the figure show the direction fields for the four systems of differential equations below. Try to reason out which direction field goes with which system.
(a) $\begin{aligned} & x^{\prime}=3 x-y \\ & y^{\prime}=4 x-2 y\end{aligned}$
(c) $\begin{aligned} & x^{\prime}=2 y \\ & y^{\prime}=-2 x\end{aligned}$
(b) $\begin{aligned} & x^{\prime}=-2 x+y \\ & y^{\prime}=x-2 y\end{aligned}$

