Solutions- Homework set to replace 7.1

1. If $x(t)$ and $y(t)$ are plotted below (versus time), plot the graph in the $x y$-plane. (Hint: You might think about some specific points in the $x y$-plane). Remember that at $t=-2$, you're starting all the way to the left, and at $t=2$, you're all the way to the right (in the t-plane). You may assume that the x-coordinate is the parabola.

Hint: If you're having trouble, try plotting specific points and transfer those points onto the $x y$ plane.
2. Exercise 22, p 363 (Section 7.1)

Construct the DE's by looking at "Rate In - Rate Out", and make sure your units are matching up. Define $Q_{1}(t)$ and $Q_{2}(t)$ to be the ounces of salt in Tanks 1 and 2 (respectively). Before we start, we take note of the rates in and out of each tank- The total amounts of water in tanks 1 and 2 (30 gallons and 20 gallons, respectively) does not change (important for the rates in and out).
Filling in the quantities from the figure on p. 363, we have:

$$
\begin{gathered}
\frac{d Q_{1}}{d t}=\frac{1.5 \mathrm{gal}}{\mathrm{~min}} \cdot \frac{1 \mathrm{oz}}{\mathrm{gal}}+\frac{1.5 \mathrm{gal}}{\mathrm{~min}} \cdot \frac{Q_{2} \mathrm{oz}}{20 \mathrm{gal}}-\frac{3 \mathrm{gal}}{\mathrm{~min}} \cdot \frac{Q_{1} \mathrm{oz}}{30 \mathrm{gal}} \\
\frac{d Q_{2}}{d t}=\frac{1 \mathrm{gal}}{\mathrm{~min}} \cdot \frac{3 \mathrm{oz}}{\mathrm{gal}}+\frac{3 \mathrm{gal}}{\mathrm{~min}} \cdot \frac{Q_{1} \mathrm{oz}}{30 \mathrm{gal}}-\frac{4 \mathrm{gal}}{\mathrm{~min}} \cdot \frac{Q_{2} \mathrm{oz}}{20 \mathrm{gal}}
\end{gathered}
$$

Simplifying, and putting them in order:

$$
\begin{gathered}
\frac{d Q_{1}}{d t}=-\frac{1}{10} Q_{1}+\frac{3}{40} Q_{2}+\frac{3}{2} \\
\frac{d Q_{2}}{d t}=\frac{1}{10} Q_{1}-\frac{1}{5} Q_{2}+3
\end{gathered}
$$

The system is currently non-homogeneous because of the constants $3 / 2$ and 3 .

The equilibria are found by solving for where the derivatives are zero. We simplify to make Cramer's Rule easier to apply:

$$
\begin{aligned}
-\frac{1}{10} Q_{1}+\frac{3}{40} Q_{2}+\frac{3}{2} & =0 \\
\frac{1}{10} Q_{1}-\frac{1}{5} Q_{2}+3 & =0
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
-4 Q_{1}+3 Q_{2} & =-60 \\
Q_{1}-2 Q_{2} & =-30
\end{aligned}
$$

Therefore, using the determinants, the equilibrium solution is:

$$
Q_{1}=\frac{210}{5}=42 \quad Q_{2}=\frac{180}{5}
$$

The last part of the question shows that a change of variables results in a homogeneous differential equation. That is, if $x_{1}=Q_{1}-42$ and $x_{2}=Q_{2}-36$, then substitution into the system of DE's:

$$
x_{1}^{\prime}=Q_{1}^{\prime} \quad x_{2}^{\prime}=Q_{2}^{\prime}
$$

and

$$
-\frac{1}{10}\left(x_{1}+42\right)+\frac{3}{40}\left(x_{2}+36\right)+\frac{3}{2}=-\frac{1}{10} x_{1}+\frac{3}{40} x_{2}
$$

Similarly, substitution into the second equation and substituting:

$$
\frac{1}{10}\left(x_{1}+42\right)-\frac{1}{5}\left(x_{2}+36\right)+3=\frac{1}{10} x_{1}-\frac{1}{5} x_{2}
$$

Notice that our change of coordinates simply shifted the coordinate system so that the equilibrium is now at the origin. To get the initial conditions, make the last substitution:

$$
\begin{array}{ll}
x_{1}^{\prime}=-\frac{1}{10} x_{1}+\frac{3}{40} x_{2} \\
x_{2}^{\prime}=\frac{1}{10} x_{1}-\frac{1}{5} x_{2}
\end{array} \quad x_{1}(0)=-17, \quad x_{2}(0)=-21
$$

3. Solve the system of equations given by first converting it into a second order linear ODE (then use Chapter 3 methods):
(a) $\begin{aligned} & x^{\prime}=-2 x+y \\ & y^{\prime}=x-2 y\end{aligned} \Rightarrow y=x^{\prime}+2 x \quad \Rightarrow \quad\left(x^{\prime}+2 x\right)^{\prime}=x-2\left(x^{\prime}+2 x\right)$

So we have: $x^{\prime \prime}+2 x^{\prime}=x-2 x^{\prime}-4 x$, or

$$
x^{\prime \prime}+4 x^{\prime}+3 x=0 \quad \Rightarrow \quad r^{2}+4 r+3=0 \quad \Rightarrow \quad(r+1)(r+3)=0
$$

Therefore, $x(t)=C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{-3 t}$. For y, we have $y=x^{\prime}+2 x$, or

$$
y=-C_{1} \mathrm{e}^{-t}-3 C_{2} \mathrm{e}^{-3 t}+2 C_{1} \mathrm{e}^{-t}+2 C_{2} \mathrm{e}^{-3 t}=C_{1} \mathrm{e}^{-t}-C_{2} \mathrm{e}^{-3 t}
$$

(b) $\begin{aligned} & x^{\prime}=2 y \\ & y^{\prime}=-2 x\end{aligned} \Rightarrow y=\frac{1}{2} x^{\prime} \quad \Rightarrow \quad\left(\frac{1}{2} x^{\prime}\right)^{\prime}=-2 x$

For $x^{\prime \prime}+4 x=0$, we have $r= \pm 2 i$, so $x(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)$, and $y=$ $\frac{1}{2}\left(-2 C_{1} \sin (2 t)+2 C_{2} \cos (2 t)\right)=-C_{1} \sin (2 t)+C_{2} \cos (2 t)$
4. Give the solution to each system of equations. If it has an infinite number of solutions, give your answer in vector form:
For the first system,

$$
\begin{array}{r}
3 x+2 y=1 \\
2 x-y=3
\end{array} \quad \Rightarrow \quad x=\frac{\left|\begin{array}{rr}
1 & 2 \\
3 & -1
\end{array}\right|}{\left|\begin{array}{rr}
3 & 2 \\
2 & -1
\end{array}\right|}=1 \quad y=\frac{\left|\begin{array}{lr}
3 & 1 \\
2 & 3
\end{array}\right|}{\left|\begin{array}{rr}
3 & 2 \\
2 & -1
\end{array}\right|}=-1
$$

For the second system, the two lines are parallel (NO SOLUTION).
For the third system, the two lines are the same line, $3 x+2 y=1$, or $y=-(3 / 2) x+$ $(1 / 2)$. Writing the equation of the line in vector form, we need a point and a direction. For the point, pick anything- The y-intercept, for example, or perhaps the point $(1,-1)$. Secondly, the direction comes from the slope: $-3 / 2$ is "rise over run", or "change in y over change in x ", so the direction can be interpreted as the vector $\langle 2,-3\rangle$. Therefore, the line (in vector form and parameterized by t):

$$
\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+t\left[\begin{array}{r}
2 \\
-3
\end{array}\right]
$$

5. Let A, B be the matrices below. Compute the matrix operation listed.

$$
A=\left[\begin{array}{rr}
1 & -2 \\
2 & 3
\end{array}\right] \quad B=\left[\begin{array}{rr}
2 & -1 \\
-1 & 1
\end{array}\right]
$$

(a) $2 A+B^{T}=\left[\begin{array}{rr}4 & -5 \\ 3 & 7\end{array}\right]$
(b) $B A=\left[\begin{array}{rr}0 & -7 \\ 1 & 5\end{array}\right]$
(c) $A^{-1}=\frac{1}{7}\left[\begin{array}{rr}3 & 2 \\ -2 & 1\end{array}\right]$
6. Vectors and matrices might have complex numbers. If $z=3+2 i$ and vector $\mathbf{v}=$ $[1+i, 2-2 i]^{T}$, then find the real part and the imaginary part of $z \mathbf{v}$.

SOLUTION:

$$
z \mathbf{v}=(3+2 i)\left[\begin{array}{c}
1+i \\
2-2 i
\end{array}\right]=\left[\begin{array}{c}
1+5 i \\
10-2 i
\end{array}\right]
$$

The real and imaginary parts of the vector are:

$$
\left[\begin{array}{r}
1 \\
10
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{r}
5 \\
-2
\end{array}\right]
$$

7. Adding two vectors: Geometrically (and numerically) compute the following, where $\mathbf{u}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Be sure to draw each vector out, and see if you can see a pattern.
(a) $\mathbf{u}+\mathbf{v}$
(b) $\mathbf{u}-2 \mathbf{v}$
(c) $\mathbf{u}+\frac{1}{2} \mathbf{v}$
(d) $-\mathbf{u}+\mathbf{v}$

8. Verify that $\mathbf{x}_{1}(t)$ below satisfies the DE: $\mathbf{x}^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right] \mathbf{x}, \quad \mathbf{x}_{1}(t)=\mathrm{e}^{3 t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$ SOLUTION: First, the derivative is:

$$
\mathrm{x}_{1}^{\prime}=3 \mathrm{e}^{3 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

Secondly, the matrix times \mathbf{x}_{1} is (I factored the exponential out):

$$
\mathrm{e}^{3 t}\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\mathrm{e}^{3 t}\left[\begin{array}{l}
3 \\
6
\end{array}\right]
$$

And this is the same as the derivative.
9. Consider

$$
\begin{aligned}
& x^{\prime}=2 x+3 y+1 \\
& y^{\prime}=x-y-2
\end{aligned}
$$

First find the equilibrium solution, x_{e}, y_{e}. Then show that, if $u=x-x_{e}$ and $v=y-y_{e}$, then

$$
\begin{aligned}
u^{\prime} & =2 u+3 v \\
v^{\prime} & =u-v
\end{aligned}
$$

SOLUTION: This exercise will hopefully make the tank modeling problem make more sense. In this case, solving for the equilibrium solution gives us the system:

$$
\begin{aligned}
2 x+3 y & =-1 \\
x-y & =2
\end{aligned} \quad x=1, y=-1
$$

Now, if $u=x-1$ and $v=y+1$, then

$$
\begin{gathered}
u^{\prime}=x^{\prime}=2 x+3 y+1=2(u+1)+3(v-1)=2 u+3 v \\
v^{\prime}=y^{\prime}=x-y-2=(u+1)-(v-1)-2=u-v
\end{gathered}
$$

10. The four graphs in the figure show the direction fields for the four systems of differential equations below. Try to reason out which direction field goes with which system.
(a) $\begin{aligned} & x^{\prime}=3 x-y \\ & y^{\prime}=4 x-2 y\end{aligned} \quad$ Graph 3

Along the positive x-axis, arrows should go in the direction of $\langle 3,4\rangle$ - Only in Graph 3.
(b) $\begin{aligned} & x^{\prime}=-2 x+y \\ & y^{\prime}=x-2 y\end{aligned}$ Graph 1

Along the positive x-axis, arrows should go in the direction of $\langle-2,1\rangle$, which could be 1 or 4 . Along the positive y-axis, arrows should go in the direction of $\langle 1,-2\rangle$, so that is only for Graph 1 .
(c) $\begin{aligned} & x^{\prime}=2 y \\ & y^{\prime}=-2 x\end{aligned}$ Graph 2

Along the positive x-axis, arrows are going straight down, so Graph 2 is the only choice.
(d) $\begin{aligned} & x^{\prime}=-x-4 y \\ & y^{\prime}=x-y\end{aligned}$ Graph 4

This is 4 by process of elimination, but you can also check the positive x - and y - axis.

