Summary- Elements of Chapters 7 and 9

We started by looking at general systems of equations. Be able to convert an n^{th} order DE to a system of first order. Be able to convert a system of two first order equations to a single equation of second order. Be able to convert a system to dy/dx form. (See "Homework, Day 1 (Conversions)" on the class website).

Eigenvalues and Eigenvectors

For the following, we are solving the system:

$$\begin{array}{ccc} x' &= ax + by \\ y' &= cx + dy \end{array} \quad \Leftrightarrow \quad \left[\begin{array}{c} x' \\ y' \end{array} \right] \left[\begin{array}{c} a & b \\ c & d \end{array} \right] \left[\begin{array}{c} x \\ y \end{array} \right] \quad \Leftrightarrow \quad \mathbf{x}' = A\mathbf{x}$$

1. Definition: If there is a constant λ and a non-zero vector **v** that solves

$$\begin{aligned} (a - \lambda)v_1 &+ bv_2 &= 0 \\ cv_1 &+ (d - \lambda)v_2 &= 0 \end{aligned}$$
(1)

then λ is an eigenvalue, and **v** is an associated eigenvector. This system has a non-zero solution for v_1, v_2 only if the two lines are multiples of each other. In that case, the determinant must be zero.

$$\begin{vmatrix} a-\lambda & b\\ c & d-\lambda \end{vmatrix} = 0 \quad \Rightarrow \quad \lambda^2 - (a+d)\lambda + (ad-bc) = 0 \quad \Rightarrow \lambda^2 - \operatorname{Tr}(A)\lambda + \det(A) = 0$$

And this is the **characteristic equation**. This is formally solved via the quadratic formula, but we would typically factor it or complete the square. For each λ , we must go back and solve Equation (??) to find **v**. As a shortcut, the eigenvector can be written down directly (as long as the equation is not 0 = 0)

$$(a-\lambda)v_1+cv_2=0 \quad \Rightarrow \quad \mathbf{v} = \begin{bmatrix} -c\\ a-\lambda \end{bmatrix}$$

Solve $\mathbf{x}' = A\mathbf{x}$

- 1. We make the ansatz: $\mathbf{x}(t) = e^{\lambda t} \mathbf{v}$, substitute into the DE, and we find that λ , \mathbf{v} must be an eigenvalue, eigenvector of the matrix A.
- 2. The eigenvalues are found by solving the characteristic equation:

$$\lambda^{2} - \operatorname{Tr}(A)\lambda + \det(A) = 0$$
 $\lambda = \frac{\operatorname{Tr}(A) \pm \sqrt{\Delta}}{2}$

The solution is one of three cases, depending on Δ :

• Real λ_1, λ_2 with two eigenvectors, $\mathbf{v}_1, \mathbf{v}_2$:

$$\mathbf{x}(t) = C_1 \mathrm{e}^{\lambda_1 t} \mathbf{v}_1 + C_2 \mathrm{e}^{\lambda_2 t} \mathbf{v}_2$$

• Complex $\lambda = a + ib$, **v** (we only need one):

$$\mathbf{x}(t) = C_1 \operatorname{Re}\left(e^{\lambda t} \mathbf{v}\right) + C_2 \operatorname{Im}\left(e^{\lambda t} \mathbf{v}\right)$$

• One eigenvalue, one eigenvector (which is not needed). Determine **w**, where:

$$(a - \lambda)x_0 + cy_0 = w_1$$

$$cx_0 + (d - \lambda)y_0 = w_2$$

Then

$$\mathbf{x}(t) = e^{\lambda t} \left(\begin{bmatrix} x_0 \\ y_0 \end{bmatrix} + t \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} \right) = e^{\lambda t} (\mathbf{x}_0 + t\mathbf{w})$$

Note: In this solution, we don't have arbitrary constants- rather, we're writing the solution in terms of the initial conditions.

	Chapter 3	Chapter 7
Form:	ay'' + by' + cy = 0	$\mathbf{x}' = A\mathbf{x}$
Ansatz:	$y = e^{rt}$	$\mathbf{x} = \mathrm{e}^{\lambda t} \mathbf{v}$
Char Eqn:	$ar^2 + br + c = 0$	$\det(A - \lambda I) = 0$
Real Solns	$y = C_1 \mathrm{e}^{r_1 t} + C_2 \mathrm{e}^{r_2 t}$	$\mathbf{x}(t) = C_1 \mathrm{e}^{\lambda_1 t} \mathbf{v}_1 + C_2 \mathrm{e}^{\lambda_2 t} \mathbf{v}_2$
Complex	$y = C_1 \operatorname{Re}(e^{rt}) + C_2 \operatorname{Im}(e^{rt})$	$\mathbf{x}(t) = C_1 \operatorname{Re}\left(e^{\lambda t} \mathbf{v}\right) + C_2 \operatorname{Im}\left(e^{\lambda t} \mathbf{v}\right)$
SingleRoot	$y = e^{rt}(C_1 + C_2 t)$	$\mathbf{x}(t) = \mathrm{e}^{\lambda t} \left(\mathbf{x}_0 + t \mathbf{w} \right)$

You might find this helpful- Below there is a chart comparing the solutions from Chapter 3 to the solutions in Chapter 7:

Classification of the Equilibria

The origin is always an equilibrium solution to $\mathbf{x}' = A\mathbf{x}$, and we can use the Poincaré Diagram to help us classify the origin (in Chapter 7) or other equilibrium solutions (in Chapter 9).

Solve General Nonlinear Equations

We don't have a method that will work on every system of nonlinear differential equations, although there are some tricks we can try with special cases- that is, given the system

$$\frac{\frac{dx}{dt}}{\frac{dy}{dt}} = \frac{f(x,y)}{g(x,y)} \quad \Rightarrow \quad \frac{dy}{dx} = \frac{g(x,y)}{f(x,y)}$$

And we might get lucky if it is in the form of an equation from Chapter 2.

Local Analysis of Nonlinear Equations

Often, we can perform a local analysis of a system of nonlinear DEs by "linearizing about the equilibria". Given

$$\begin{array}{ll} \frac{lx}{lt} &= f(x,y)\\ \frac{ly}{lt} &= g(x,y) \end{array}$$

- Find the equilibrium solutions (f(x, y) = 0 and g(x, y) = 0).
- At each equilibrium, we perform the local analysis by first linearizing, then we classify the equilibrium. Given an equilibrium at x = a, y = b, we construct the matrix (the Jacobian) at that point:

$$\left[\begin{array}{ccc}f_x(a,b)&f_y(a,b)\\g_x(a,b)&g_y(a,b)\end{array}\right]$$

Use the Poincaré Diagram to classify the equilibrium.

Modeling

Recall that we also did some modeling in these sections- Primarily, we looked at the predator-prey model and the tank mixing problem (with multiple tanks). Given a system that represents two populations, you should be able to determine if the system represents predator-prey, competing species, or cooperating species.