Solutions to the Extra Practice in conversions:

1. Convert the following $n^{\text {th }}$ order DEs to systems of first order.
(a) $y^{\prime \prime}+3 y^{\prime}+2 y=0$

SOLUTION: Let $x_{1}=y, x_{2}=y^{\prime}$. Then:

$$
\begin{array}{ll}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-2 x_{1}-3 x_{2}
\end{array}
$$

(b) $y^{\prime \prime \prime}=2 y-3 y^{\prime}$

SOLUTION: Let $x_{1}=y, x_{2}=y^{\prime}, x_{3}=y^{\prime \prime}$. Then:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=x_{3} \\
& x_{3}^{\prime}=2 x_{1}-3 x_{2}
\end{aligned}
$$

(c) $2 y^{\prime \prime}+6 y^{\prime}+y=0$

SOLUTION: Let $x_{1}=y, x_{2}=y^{\prime}$. Then:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=-(1 / 2) x_{1}-3 x_{2}
\end{aligned}
$$

(d) $y^{\prime \prime}+5 y=0$

SOLUTION: Let $x_{1}=y, x_{2}=y^{\prime}$. Then:

$$
\begin{aligned}
x_{1}^{\prime} & =x_{2} \\
x_{2}^{\prime} & =-5 x_{1}
\end{aligned}
$$

(e) $y^{(v)}=y-3 y^{\prime}+t y^{\prime \prime}+y^{\prime \prime \prime}-3 y^{(i v)}$

SOLUTION: Let $x_{1}=y, x_{2}=y^{\prime}, x_{3}=y^{\prime \prime}, x_{4}=y^{\prime \prime \prime}, x_{5}=y^{(i v)}$. Then:

$$
\begin{aligned}
& x_{1}^{\prime}=x_{2} \\
& x_{2}^{\prime}=x_{3} \\
& x_{3}^{\prime}=x_{4} \\
& x_{4}^{\prime}=x_{5} \\
& x_{5}^{\prime}=x_{1}-3 x_{2}+t x_{3}+x_{4}-3 x_{5}
\end{aligned}
$$

2. Convert the following systems of first order to an equivalent second order DE , if possible.
(a) $\begin{aligned} & x_{1}^{\prime}=x_{1}+2 x_{2} \\ & x_{2}^{\prime}=2 x_{1}+x_{2}\end{aligned} \quad$ Using Eqn 1, get $x_{2}=\frac{1}{2} x_{1}^{\prime}-\frac{1}{2} x_{1}$:

$$
\frac{1}{2} x_{1}^{\prime \prime}-\frac{1}{2} x_{1}^{\prime}=2 x_{1}+\frac{1}{2} x_{1}^{\prime}-\frac{1}{2} x_{1} \quad \Rightarrow \quad x_{1}^{\prime \prime}-2 x_{1}^{\prime}-3 x_{1}=0
$$

(b) $\begin{aligned} & x_{1}^{\prime}=-2 x_{1}+x_{2} \\ & x_{2}^{\prime}=x_{1}+x_{2}\end{aligned} \quad$ Using Eqn 1, get $x_{2}=x_{1}^{\prime}+2 x_{1}$:

$$
x_{1}^{\prime \prime}+2 x_{1}^{\prime}=x_{1}+x_{1}^{\prime}+2 x_{1} \quad \Rightarrow \quad x_{1}^{\prime \prime}+x_{1}^{\prime}-3 x_{1}=0
$$

(c) $\begin{aligned} & x_{1}^{\prime}=x_{1} \\ & x_{2}^{\prime}=3 x_{2}\end{aligned}$

Since the DE for x_{1} depends only on x_{1} and the DE for x_{2} depends only on x_{2}, we say that the system is decoupled. In that case, we cannot express the system as a single second order DE.
3. Convert the system to a single first order equation by expressing it as follows, then solve the differential equation.

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

(a) $\begin{aligned} & x^{\prime}=y \\ & y^{\prime}=-x\end{aligned}$

SOLUTION:
$\frac{d y}{d x}=\frac{-x}{y} \Rightarrow \int y d y=-\int x d x \quad \Rightarrow \quad \frac{1}{y} y^{2}=-\frac{1}{2} x^{2}+C \quad \Rightarrow \quad x^{2}+y^{2}=k$
Solutions in the $x y$-plane are circles.
(b)

$$
\begin{aligned}
x^{\prime} & =x \\
y^{\prime} & =(x-3 y) x
\end{aligned}
$$

SOLUTION:

$$
\frac{d y}{d x}=\frac{(x-3 y) x}{x} \Rightarrow \frac{d y}{d x}=x-3 y \quad \Rightarrow \quad y^{\prime}+3 y=x
$$

This is a linear differential equation with integrating factor $\mathrm{e}^{3 x}$.

$$
\left(y \mathrm{e}^{3 x}\right)^{\prime}=x \mathrm{e}^{3 x}
$$

Use integration by parts to get:

$$
\left(y \mathrm{e}^{3 x}=\frac{1}{3} x \mathrm{e}^{3 x}-\frac{1}{9} \mathrm{e}^{3 x}+C \quad \Rightarrow \quad y=\frac{1}{3} x-\frac{1}{9}+C \mathrm{e}^{-3 x}\right.
$$

NOTE: You also could have solved this using the homogeneous and particular solutions with Method of Undetermined Coefficients.
(c) $\begin{aligned} & x^{\prime}=x-3 y^{2} \\ & y^{\prime}=-(2 x+y)\end{aligned}$

SOLUTION: Looking at the terms, we can't separate variables and it is not linear, so it may be exact:

$$
\frac{d y}{d x}=\frac{-(2 x+y)}{x-3 y^{2}} \Rightarrow(2 x+y)+\left(x-3 y^{2}\right) \frac{d y}{d x}=0
$$

Now, $N_{y}=1=M_{x}$. We should get that the solution is:

$$
x^{2}+x y-y^{3}=C
$$

4. Solve the de-coupled system in 2(c).

SOLUTION: The two differential equations can be solved independently:

$$
x_{1}^{\prime}=x_{1} \quad \Rightarrow x_{1}=C_{1} \mathrm{e}^{t} \quad \text { and } \quad x_{2}^{\prime}=3 x_{2} \quad \Rightarrow x_{2}=C_{2} \mathrm{e}^{3 t}
$$

As a set of parametric functions,

$$
\mathbf{x}(t)=\left\langle C_{1} \mathrm{e}^{t}, C_{2} \mathrm{e}^{3 t}\right\rangle
$$

