Last time:

- Vocab: ODE, PDE, IVP, Order of a DE, Solution to a DE
- Skills: Be able to verify that $\phi(t)$ is a solution to a DE.
- Three models: Mice/Owls, Newton's Law of Cooling.
- if $d y / d t=k y$, then $y(t)=A \mathrm{e}^{k t}$
"Review": Hyperbolic Trig Functions (See Handout)
- $\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$

"Review": Hyperbolic Trig Functions (See Handout)

- $\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ Read: "sinch"
"Review": Hyperbolic Trig Functions (See Handout)
- $\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ Read: "sinch"
- An odd function (sketch)

"Review": Hyperbolic Trig Functions (See Handout)

- $\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ Read: "sinch"
- An odd function (sketch)
- Note where the negatives go (with each other)

"Review": Hyperbolic Trig Functions (See Handout)

- $\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ Read: "sinch"
- An odd function (sketch)
- Note where the negatives go (with each other)
- $\cosh (x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$

"Review": Hyperbolic Trig Functions (See Handout)

- $\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ Read: "sinch"
- An odd function (sketch)
- Note where the negatives go (with each other)
- $\cosh (x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ Read: "cosch"

"Review": Hyperbolic Trig Functions (See Handout)

- $\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ Read: "sinch"
- An odd function (sketch)
- Note where the negatives go (with each other)
- $\cosh (x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ Read: "cosch"
- An even function (sketch)

"Review": Hyperbolic Trig Functions (See Handout)

- $\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ Read: "sinch"
- An odd function (sketch)
- Note where the negatives go (with each other)
- $\cosh (x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ Read: "cosch"
- An even function (sketch)
- How would you define the hyperbolic tangent?

"Review": Hyperbolic Trig Functions (See Handout)

- $\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ Read: "sinch"
- An odd function (sketch)
- Note where the negatives go (with each other)
- $\cosh (x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ Read: "cosch"
- An even function (sketch)
- How would you define the hyperbolic tangent?

$$
\tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}-1}
$$

"Review": Hyperbolic Trig Functions (See Handout)

- $\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ Read: "sinch"
- An odd function (sketch)
- Note where the negatives go (with each other)
- $\cosh (x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ Read: "cosch"
- An even function (sketch)
- How would you define the hyperbolic tangent?

$$
\tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}-1}
$$

- Derivatives are not quite the same as the trig counterparts:

"Review": Hyperbolic Trig Functions (See Handout)

- $\sinh (x)=\frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{2}$ Read: "sinch"
- An odd function (sketch)
- Note where the negatives go (with each other)
- $\cosh (x)=\frac{\mathrm{e}^{x}+\mathrm{e}^{-x}}{2}$ Read: "cosch"
- An even function (sketch)
- How would you define the hyperbolic tangent?

$$
\tanh (x)=\frac{\sinh (x)}{\cosh (x)}=\frac{\mathrm{e}^{2 x}-1}{\mathrm{e}^{2 x}-1}
$$

- Derivatives are not quite the same as the trig counterparts:

$$
\frac{d}{d x}(\sinh (x))=\cosh (x) \quad \frac{d}{d x}(\cosh (x))=\sinh (x)
$$

Review

Let's review "integration by parts"! Usual way (inverse product rule)

$$
\int u d v=u v-\int v d u
$$

However, if we have to perform integration by parts several times, a table is more useful (handout and boardwork).

Today in Differential Equations:

Today in Differential Equations:

- Solve $y^{\prime}=a y+b$

Today in Differential Equations:

- Solve $y^{\prime}=a y+b$
- Be able to visualize solutions to general DE: $y^{\prime}=f(t, y)$.

Solve $y^{\prime}=a y+b$

Hint: We can rewrite $y^{\prime}=a y+b$ as:

$$
\left(y+\frac{b}{a}\right)^{\prime}=a\left(y+\frac{b}{a}\right)
$$

Solve $y^{\prime}=a y+b$

Hint: We can rewrite $y^{\prime}=a y+b$ as:

$$
\left(y+\frac{b}{a}\right)^{\prime}=a\left(y+\frac{b}{a}\right)
$$

and substitute $Y(t)=y(t)+b / a$. Then:

Solve $y^{\prime}=a y+b$

Hint: We can rewrite $y^{\prime}=a y+b$ as:

$$
\left(y+\frac{b}{a}\right)^{\prime}=a\left(y+\frac{b}{a}\right)
$$

and substitute $Y(t)=y(t)+b / a$. Then:

$$
Y^{\prime}=a Y \quad \Rightarrow
$$

Solve $y^{\prime}=a y+b$

Hint: We can rewrite $y^{\prime}=a y+b$ as:

$$
\left(y+\frac{b}{a}\right)^{\prime}=a\left(y+\frac{b}{a}\right)
$$

and substitute $Y(t)=y(t)+b / a$. Then:

$$
Y^{\prime}=a Y \quad \Rightarrow \quad Y=C e^{a t}
$$

or

Solve $y^{\prime}=a y+b$

Hint: We can rewrite $y^{\prime}=a y+b$ as:

$$
\left(y+\frac{b}{a}\right)^{\prime}=a\left(y+\frac{b}{a}\right)
$$

and substitute $Y(t)=y(t)+b / a$. Then:

$$
Y^{\prime}=a Y \quad \Rightarrow \quad Y=C e^{a t}
$$

or

$$
y+\frac{b}{a}=C \mathrm{e}^{a t} \Rightarrow y=C \mathrm{e}^{\mathrm{at}}-\frac{b}{a}
$$

where C depends on the initial conditions...

Example:

Solve $y^{\prime}=-2 y+5$

Example:

Solve $y^{\prime}=-2 y+5$
SOLUTION:

$$
y(t)=C \mathrm{e}^{-2 t}+\frac{5}{2}
$$

Example:

Solve $y^{\prime}=-2 y+5$
SOLUTION:

$$
y(t)=C \mathrm{e}^{-2 t}+\frac{5}{2}
$$

What do the solutions do for large t ?

Example:

Solve $y^{\prime}=-2 y+5$ SOLUTION:

$$
y(t)=C \mathrm{e}^{-2 t}+\frac{5}{2}
$$

What do the solutions do for large t ?
We note that for any C, the solution will converge to $5 / 2$ as t gets large.

A special solution to $y^{\prime}=a y+b:$ "Equilibrium"

The DE has an equilibrium solution if there is a constant solution to the DE.

A special solution to $y^{\prime}=a y+b:$ "Equilibrium"

The DE has an equilibrium solution if there is a constant solution to the DE.
We can find it by setting the derivative to zero...

A special solution to $y^{\prime}=a y+b$: "Equilibrium"

The DE has an equilibrium solution if there is a constant solution to the DE.
We can find it by setting the derivative to zero... For $y^{\prime}=a y+b, y(t)=-b / a$ is the equilibrium solution.

Visualizing Solutions - General Case

A differential equation is like a "road map":

$$
y^{\prime}=f(t, y)
$$

This says that at each point (t, y), we can compute the slope of the line tangent to the solution curve $y(t)$.

Visualizing Solutions - General Case

A differential equation is like a "road map":

$$
y^{\prime}=f(t, y)
$$

This says that at each point (t, y), we can compute the slope of the line tangent to the solution curve $y(t)$.
If the function y is well behaved, the tangent line should be a good approximation to y.

Visualizing Solutions - General Case

A differential equation is like a "road map":

$$
y^{\prime}=f(t, y)
$$

This says that at each point (t, y), we can compute the slope of the line tangent to the solution curve $y(t)$.
If the function y is well behaved, the tangent line should be a good approximation to y.

Definition: A direction field is a plot in the (t, y) plane that give the local tangent lines to the solution to a first order ODE.

Example: $y^{\prime}=t-y^{2}$

Example: $y^{\prime}=t-y^{2}$

$$
\begin{array}{rr|r}
t & y & t-y^{2} \\
\hline 1 & -1 &
\end{array}
$$

Example: $y^{\prime}=t-y^{2}$

$$
\begin{array}{rr|r}
t & y & t-y^{2} \\
\hline 1 & -1 & 0 \\
2 & 1 &
\end{array}
$$

Example: $y^{\prime}=t-y^{2}$

$$
\begin{array}{rr|r}
t & y & t-y^{2} \\
\hline 1 & -1 & 0 \\
2 & 1 & 1 \\
-1 & 1 &
\end{array}
$$

Example: $y^{\prime}=t-y^{2}$

t	y	$t-y^{2}$
1	-1	0
2	1	1
-1	1	-2

Isoclines:

In drawing a picture, we might consider curves of constant slope. For example, with zero slope:

$$
0=t-y^{2} \quad \Rightarrow \quad y^{2}=t
$$

Figure: Direction Field with Isoclines: $y^{\prime}=-2, y^{\prime}=0, y^{\prime}=1$

Give an ODE of the form $y^{\prime}=a y+b$ whose direction field looks like:

Same question as before:

Choose a DE

(1) $y^{\prime}=3-y$
(2) $y^{\prime}=y(y+3)$

0 $y^{\prime}=y(3-y)$
($y^{\prime}=2 y-1$

Homework Hint: \#22, Section 1.1

$$
V=\frac{4}{3} \pi r^{3} \quad A=4 \pi r^{2}
$$

so if $V^{\prime}=k A$, give V^{\prime} in terms of V only.

Homework Hint: \#14, Section 1.3
Differentiate the following with respect to t :

$$
f(t) \int_{0}^{t} G(s) d s
$$

SOLUTION: Use the product rule and the FTC:

$$
f^{\prime}(t) \int_{0}^{t} G(s) d s+f(t) G(t)
$$

Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

$$
\frac{d y}{d t}+a(t) y(t)=f(t) \quad \text { or } \quad y^{\prime}+a(t) y=f(t)
$$

Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

$$
\frac{d y}{d t}+a(t) y(t)=f(t) \quad \text { or } \quad y^{\prime}+a(t) y=f(t)
$$

OBSERVATION: By the product rule and chain rule,

$$
\left(y \mathrm{e}^{P(t)}\right)^{\prime}=
$$

Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

$$
\frac{d y}{d t}+a(t) y(t)=f(t) \quad \text { or } \quad y^{\prime}+a(t) y=f(t)
$$

OBSERVATION: By the product rule and chain rule,

$$
\left(y \mathrm{e}^{P(t)}\right)^{\prime}=y^{\prime} \mathrm{e}^{P(t)}+P^{\prime}(t) y \mathrm{e}^{P(t)}=
$$

Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

$$
\frac{d y}{d t}+a(t) y(t)=f(t) \quad \text { or } \quad y^{\prime}+a(t) y=f(t)
$$

OBSERVATION: By the product rule and chain rule,

$$
\left(y \mathrm{e}^{P(t)}\right)^{\prime}=y^{\prime} \mathrm{e}^{P(t)}+P^{\prime}(t) y \mathrm{e}^{P(t)}=\mathrm{e}^{P(t)}\left(y^{\prime}+P^{\prime}(t) y\right)
$$

Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

$$
\frac{d y}{d t}+a(t) y(t)=f(t) \quad \text { or } \quad y^{\prime}+a(t) y=f(t)
$$

OBSERVATION: By the product rule and chain rule,

$$
\left(y \mathrm{e}^{P(t)}\right)^{\prime}=y^{\prime} \mathrm{e}^{P(t)}+P^{\prime}(t) y \mathrm{e}^{P(t)}=\mathrm{e}^{P(t)}\left(y^{\prime}+P^{\prime}(t) y\right)
$$

Question: Is there a function $\mathrm{e}^{P(t)}$ that will turn the left side of the DE to the derivative of something?

Solve Linear DEs using Integrating Factor

Given $y^{\prime}+a(t) y=f(t)$, we compute the integrating factor

$$
\mathrm{e}^{\int a(t) d t}
$$

and multiply the DE by it:

$$
\mathrm{e}^{\int a(t) d t}\left(y^{\prime}+a(t) y\right)=f(t) \mathrm{e}^{\int a(t) d t}
$$

This makes the left side a single derivative:

$$
\left(y(t) \mathrm{e}^{\int a(t) d t}\right)^{\prime}=f(t) \mathrm{e}^{\int a(t) d t}
$$

which can be solved by integrating both sides.

$$
y(t) \mathrm{e}^{\int a(t) d t}=\int f(t) \mathrm{e}^{\int a(t) d t} d t
$$

Example 1

$$
y^{\prime}+\frac{1}{t} y=\mathrm{e}^{-2 t}
$$

The integrating factor is

Example 1

$$
y^{\prime}+\frac{1}{t} y=\mathrm{e}^{-2 t}
$$

The integrating factor is

$$
\mathrm{e}^{\int \frac{1}{t} d t}=\mathrm{e}^{\ln (t)}=t
$$

so that

Example 1

$$
y^{\prime}+\frac{1}{t} y=\mathrm{e}^{-2 t}
$$

The integrating factor is

$$
\mathrm{e}^{\int \frac{1}{t} d t}=\mathrm{e}^{\ln (t)}=t
$$

so that

$$
t\left(y^{\prime}+3 y\right)=t \mathrm{e}^{-2 t}
$$

and

Example 1

$$
y^{\prime}+\frac{1}{t} y=\mathrm{e}^{-2 t}
$$

The integrating factor is

$$
\mathrm{e}^{\int \frac{1}{t} d t}=\mathrm{e}^{\ln (t)}=t
$$

so that

$$
t\left(y^{\prime}+3 y\right)=t \mathrm{e}^{-2 t}
$$

and

$$
(t y)^{\prime}=t \mathrm{e}^{-2 t} \quad \Rightarrow \quad t y=-\frac{1}{2} t \mathrm{e}^{-2 t}-\frac{1}{4} \mathrm{e}^{-2 t}+C
$$

(Remember to include the constant of integration!)

Example 1

$$
y^{\prime}+\frac{1}{t} y=\mathrm{e}^{-2 t}
$$

The integrating factor is

$$
\mathrm{e}^{\int \frac{1}{t} d t}=\mathrm{e}^{\ln (t)}=t
$$

so that

$$
t\left(y^{\prime}+3 y\right)=t \mathrm{e}^{-2 t}
$$

and

$$
(t y)^{\prime}=t \mathrm{e}^{-2 t} \quad \Rightarrow \quad t y=-\frac{1}{2} t \mathrm{e}^{-2 t}-\frac{1}{4} \mathrm{e}^{-2 t}+C
$$

(Remember to include the constant of integration!)
The general solution:

$$
y=-\frac{1}{2} \mathrm{e}^{-2 t}-\frac{1}{4 t} \mathrm{e}^{-2 t}+\frac{C}{t}
$$

