Homework- Graphing

Sketch solution curves to $\mathrm{x}^{\prime}=A \mathrm{x}$ given the matrix A in each problem below. For your convenience, the eigenvalues and eigenvectors are also provided.

1. $A=\left[\begin{array}{rr}-1 / 2 & 1 \\ -1 & -1 / 2\end{array}\right], \lambda=-\frac{1}{2}+i$ with $\mathbf{v}=\left[\begin{array}{l}1 \\ i\end{array}\right]$
2. $A=\left[\begin{array}{rr}-1 & -1 \\ 0 & -1 / 4\end{array}\right]$, with $\quad \begin{array}{cc}\lambda_{1}=-1 & \lambda_{2}=-1 / 4 \\ \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right] \quad \text { and } & \mathbf{v}_{2}=\left[\begin{array}{r}-4 \\ 3\end{array}\right]\end{array}$
3. $A=\left[\begin{array}{ll}3 & -2 \\ 4 & -1\end{array}\right], \lambda=1+2 i$ with $\mathbf{v}=\left[\begin{array}{r}1 \\ 1-i\end{array}\right]$
4. $A=\left[\begin{array}{rr}1 & -1 \\ -2 & 0\end{array}\right]$, with $\begin{array}{cc}\lambda_{1}=-1 & \lambda_{2}=2 \\ \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \quad \text { and } & \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -1\end{array}\right]\end{array}$

SOLUTIONS

The solutions are shown below using the software available on Canvas, but you should have something similar from a hand-drawn sketch. It is difficult to determine how "tight" the spirals are, so don't worry if yours doesn't go around as often (or vice-versa)- What is important there is the direction of the rotation (clockwise vs counterclockwise).

