Poincare Classification HW Solutions

1. Use Poincare Classification to classify the origin in each case:
(a) $\left[\begin{array}{rr}1 & -1 \\ 1 & 3\end{array}\right] \begin{gathered}\operatorname{Tr}(A)=4 \\ \operatorname{det}(A)=4 \\ \Delta=4^{2}-4 \cdot 4=0\end{gathered} \quad$ Degenerate Source
(b) $\left[\begin{array}{rr}-1 / 2 & 1 \\ -1 & -1 / 2\end{array}\right] \begin{gathered}\operatorname{Tr}(A)=-1 \\ \operatorname{det}(A)=5 / 4 \\ \Delta=-4<0\end{gathered}$
(c) $\left[\begin{array}{rr}-1 & -1 \\ 0 & -1 / 4\end{array}\right] \begin{gathered}\operatorname{Tr}(A)=-5 / 4 \\ \operatorname{det}(A)=1 / 4 \\ \Delta=(25-16) / 16>0\end{gathered} \quad$ Sink Sink
(d) $\left[\begin{array}{rr}3 & -2 \\ 4 & -1\end{array}\right] \begin{gathered}\operatorname{Tr}(A)=2 \\ \operatorname{det}(A)=5 \quad \text { Spiral Source } \\ \Delta=-16<0\end{gathered}$
2. For each matrix, find how the classification of the origin changes with α :
(a) $\left[\begin{array}{rr}\alpha & -1 \\ 2 & 0\end{array}\right] \begin{gathered}\operatorname{Tr}(A)=\alpha \\ \operatorname{det}(A)=2 \\ \Delta=\alpha^{2}-8\end{gathered}$

(b) $\left[\begin{array}{cc}\alpha & \alpha \\ 1 & 0\end{array}\right] \begin{gathered}\operatorname{Tr}(A)=\alpha \\ \operatorname{det}(A)=-\alpha \\ \Delta=\alpha^{2}+4 \alpha\end{gathered}$

(c) $\left[\begin{array}{cc}\alpha & 1 \\ \alpha & \alpha\end{array}\right] \begin{gathered}\operatorname{Tr}(A)=2 \alpha \\ \operatorname{det}(A)=\alpha^{2}-\alpha \\ \Delta=4 \alpha\end{gathered}$

3. See the figures below.

4. (a) (Typo- Should be the same matrix as $1(\mathrm{~d})$)

Now compute $\mathrm{e}^{\lambda t} \mathbf{v}=\mathrm{e}^{(1+2 i) t}\left[\begin{array}{r}1 \\ 1-i\end{array}\right]$, and we get:

$$
\mathbf{x}(t)=\mathrm{e}^{t}\left(C_{1}\left[\begin{array}{c}
\cos (2 t) \\
\cos (2 t)+\sin (2 t)
\end{array}\right]+C_{2}\left[\begin{array}{c}
\sin (2 t) \\
-\cos (2 t)+\sin (2 t)
\end{array}\right]\right)
$$

(b) $\left[\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right] \begin{gathered}\operatorname{Tr}(A)=0 \\ \operatorname{det}(A)=-1 \\ \lambda^{2}-1=0\end{gathered} \quad$ with $\mathbf{x}(t)=C_{1} \mathrm{e}^{t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+C_{2} \mathrm{e}^{-t}\left[\begin{array}{l}1 \\ 3\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 2 \\ 2 & 0\end{array}\right] \begin{gathered}\operatorname{Tr}(A)=0 \\ \operatorname{det}(A)=-4 \\ \lambda^{2}-4=0\end{gathered} \quad$ with $\mathbf{x}(t)=C_{1} \mathrm{e}^{-2 t}\left[\begin{array}{r}-1 \\ 1\end{array}\right]+C_{2} \mathrm{e}^{2 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Figures for Problem 4:

Homework solutions: 5-11 odd, 9.3

5. The critical points (equilibria) are found by first setting the first equation to zero, then go through each case for the second equation. In this case, if $x=-2$ in Equation 1, then $y=2$ in the second. If $x=y$ in the first case, then either $x=4$ or $x=0$ in the second. This gives us the following equilibria:

$$
(0,0),(4,0), \text { and }(-2,2)
$$

The Jacobian matrix is:

$$
\left[\begin{array}{rr}
-2-2 x+y & 2+x \\
4-y-2 x & 4-x
\end{array}\right]
$$

At each of the equilibria (same order as above):

$$
\left[\begin{array}{rr}
-2 & 2 \\
4 & 4
\end{array}\right] \begin{gathered}
\operatorname{Tr}(A)=2 \\
\operatorname{det}(A)=-16 \\
\Delta>0
\end{gathered} \quad\left[\begin{array}{ll}
-6 & 6 \\
-8 & 0
\end{array}\right] \begin{gathered}
\operatorname{Tr}(A)=-6 \\
\operatorname{det}(A)=48 \\
\Delta<0
\end{gathered} \quad\left[\begin{array}{ll}
4 & 0 \\
6 & 6
\end{array}\right] \begin{gathered}
\operatorname{Tr}(A)=10 \\
\operatorname{det}(A)=24 \\
\Delta>0
\end{gathered}
$$

In order then, these are: Saddle, Spiral Sink, Source.

7. The equilibria are $(-1,1)$ and $(1,1)$. The Jacobian matrix is given by the following, with linearizations to follow (in the same order as above):

$$
\left[\begin{array}{rr}
0 & -1 \\
2 x & -2 y
\end{array}\right] \Rightarrow\left[\begin{array}{rr}
0 & -1 \\
-2 & -2
\end{array}\right],\left[\begin{array}{ll}
0 & -1 \\
2 & -2
\end{array}\right]
$$

You should find that at $(-1,1)$, we have a saddle, and at $(1,1)$ we have a spiral sink.

9. In this case, we have 4 equilibria:

$$
(0,0),(2,1),(2,-2),(4,-2)
$$

The Jacobian matrix is given by:

$$
\left[\begin{array}{rr}
1-y / 2 & 2+2 y-x / 2 \\
-y+1-x & 2-x
\end{array}\right]
$$

Evaluating at the four equilbria give, in order:

$$
\left[\begin{array}{rr}
-1 & 2 \\
1 & 2
\end{array}\right] \Rightarrow\left[\begin{array}{rr}
-3 / 2 & 3 \\
-2 & 0
\end{array}\right],\left[\begin{array}{rr}
0 & -3 \\
1 & 0
\end{array}\right],\left[\begin{array}{rr}
0 & -4 \\
-1 & -2
\end{array}\right]
$$

You should find that these represent (in order),

11. Sorry about this one- The equilibria are not "nice", so this one should be done on a computer/calculator.

