Lecture Notes to substitute for 7.3-7.5

We want to solve the system:

Ty = ax; + bxy , { a b
) > X =

x & x =Ax
xh =cxy +dry c d}

SOLUTION: Use the ansatz x(t) = e*v, then x' = AeMv, so that the DE
becomes:

avy + bug = Au;

Aty = deMv = Av = \v
CUg + dvy = Aus

If the system above is true for that particular value of A and non-zero
vector v, then A is an eigenvalue of the matrix A and v is an associated
eigenvector. Note that while v is not allowed to be the zero vector, A could
be zero.

Computing A and v:
We showed that in order for eMv to solve the system, we must have:

avy +buy = Ay N (a — Ny +bvs =0
cvy +dvy = Ay cvy +(d=ANva =0

That is the key system of equations. We saw last time Ax = 0 has exactly
the zero solution iff det(A) # 0. Therefore, for this system to have a non-
trivial solution (which is a non-zero eigenvector), the determinant must
be zero.

a— A b

— 2 B _
¢ d— A\ =0 = AXN-(ac+dI+(ad—0bc)=0

You might recognize those two quantities that are computed as the trace and
determinant of A:

Tr(A)=a+d  det(A) =ad - bc

Theorem: The eigenvalues for the 2 x 2 matrix A are found by solving
the characteristic equation:

A — Tr(A)X\ + det(A) = 0

We could solve using the quadratic formula. Just as in Chapter 3, the
form of the solution will depend on whether the discriminant is positive (two
real A), negative (two complex ) or zero (one real \). Today, we will focus
on the distinct eigenvalues case.

Theorem: If A, v; and Ag, vy are the (real, distinct) eigenvalues and
eigenvectors for our systein, then the general solution to the differential equa-
tion is given by:

X(f) = C’le’\”‘vl -+ Cge/\'ztv‘z



Example 1:
P)

-4 1

SOLUTION: We could jump right to the characteristic equation, but for
practice its good to write down what it is we actually want to solve (the
unknowns below are A, vy, v5):

Find the eigenvalues and eigenvectors of the matrix [

Tuy + 2us = Ay N (T=MNvr+2v =0
—4v; + vy = Aus —duy+(1=ANvy =0

For this to have a non-zero solution v,, v9, the determinant must be zero:
(7T=XMN1=-XN+8=0 = XN -8\+15=0
This factors, so we can solve for A:
A=5)(A=3)=0 = AX=3,5

Now, for each A, go back to our system of equations for v;,vs and solve.
NOTE: By design, these equations should be multiples of each other!
For A = 3:
(7 - 3)'1)1 -+ 2‘02 =0

by + (1 — vy =0 = dvy + 2w = 0

There are an infinite number of solutions (and there always be). We want to
choose “nice” values of vy, v, that satisfies this relationship (or alternatively,
lies on the line). An easy way of writing vy, vy is to notice the following:

Given ax + by = 0, we can choose z = b,y = —a to lie on the line.

Continuing, we’ll take our vector v = J . Now go through the same

-2
process to find the eigenvector for A = 5:
(7T=5)v; +2vs =0

= 1
2 2 = ) ly == e
—4v; + (1 =5)v; =0 201420, =0 = uv+twm=0 = v [ . }

—~1

You might note: If v is an eigenvector, then so is any scalar multiple of v
(that is, the set of all eigenvectors forms a line). Therefore, when computing
eigenvectors by hand, we typically re-scale them so that they are integers.

Example 2:

31
1 3

SOLUTION: First compute the eigenvalues and eigenvectors. The deter-
minant is 8, the trace is 6. The characteristic equation is:

M—6A+8=0 = (A=-2)A-4)=0
Therefore, A = 2, 4.

Solve: x’ =



e For A = 2:

B=2v1+vy =0 vi+vy =0 -1
?)1—’:—(3*2)172 ={ = mn+ve =0 = V=

e For A\ =4,

B—4vi+ve =0 L Tutw =0 |1
v+ @B -4 =0 v —vy =0 o

The general solution is:
x(t) = Cye* [ __:11 } + Chett { i }

Example 3:

-2
5 _o | %

SOLUTION: Tr(A) = 1, the det(A4) = —2 so the characteristic equation
s A2 —=A=2=0,0r (A+1)(A-2)=0.

Solve x' =

The eigenvalues are A = —1,2. The corresponding eigenvectors are found
by solving the system above. For A\ = —1:
B3+ 1)1 —2vy =0 . _ _J1]
2004+ (—2+ vy =0 2uimve=0 V= ]
For A = 2:
(3=2uv; —2v3 =0 e 2]
21)1“*‘(—2—'2)1}2 =0 Y1 2?,2 =0 V= ] 1 ]

The solution to the system of differential equations is then:
1 2
X(f) == Cle“" [ 9 :} —{-Cge?t l: 1 ]

Visualizing the Solutions

Given a function in time like CeMv, varying time only means that we have dif-
ferent scalar multiples of the vector v. Since we have two eigenvalues/eigenvectors,
we’ll have two lines:

L1 = C]C/\ltvl L2 == Cge/\thg

The full solution is made from adding these together for specific constants

Ch, Cs.
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Lecture Notes: To Replace 7.6-7.8

Last time: to compute eigenvalues and eigenvectors for a matrix A, we first compute the characteristic
equation, which is a quadratic equation:

And in the case that the diseriminant is OSitiV('L we have two real distinct eigenvalues. TlOd:cLY we look at
& 2
the other two ases.

Case 2: Complex Eigenvalues

We'll start this section with a specific example:

3 2] L B 2w =0
T 1 - vy -+ (1 - /\)7,‘2 ={)

SOLUTION: Form the characteristic equation using the shortcut or by taking the determinant of the
coefficient matrix:
A2 . Tr(A)A + det(A) =0 AN 4N +5 =0 AN=24+7

(3—(2Z+)n 2 =00 (1) “2vy =0
vy A1 - @24y =0 vy (1= i)e =0

Using the first equation, (1 — i)y — 2vq = 0, our shortcut gives v = [ [ }

As a side remark, the other eigenvalue/eigenvector is actually the complex conjugate {we won't be using
them):

The next section tells us how to solve the system.

Applying Complex evals to Systems of DEs

Suppose we have a complex eigenvalue, A == azib. Use one of them to construct the corresponding eigenvector
(complex) v. We can then solve the system using the theorem below.

Theorem: Given complex eigenvalue A with eigenvector v, the solution to the system of differential equations
is:
x(1) = 1 Re (e}v) + Colm (eMv)

Notice that this is the extension of what we did in Chapter 3- and in fact, the justification is exactly the
same. At the end of these notes, we show that the real and imaginary parts of the solution are in fact
solutions themselves, so that we can form the general solution by taking the combination.

Below, we apply the theorem to our previous example.

Example

1 : 3 -2
Give the general solution to the system x’ = 1 e

This is the system for which we already have the eigenvalues and eigenvectors:

o 2
A= 241 Vo= [ L }



Now, compute eMvy:

91 2 %r . ) 2
S20t — o2 nos g sin(t =
© [ 1 } = (cos(t) + ¢sin(t)) { L }

o 2cos(t) -+ 2esin(t)
¢ {cos(t) + sin(8)) + i(— cos(t) + sin(t))

so that the general solution is given by:

PSR- 2 cos(t) Lo 2sin(t)
-] 20 T el a0

Geometrically, we have two things going ou. The sine and cosine functions are providing a rotation of the
solution, and the exponential, e*, is expanding the solution away from the origin. Putting these two things
together, we might guess that solutions in the plane are spiraling away from the origin (and in fact, that is
the case). In this case, we would call the origin a spiral source.

Example
. . / 2 -5
Give the general solution to the system: x' = | 5

First, the characteristic equation: A* + 1 = 0, so that \ = %i.
Now we solve for the eigenvector to A

(2 — i)l’l —~Buy =0
Tvy + (-7-2 - i)l’g ={)

Using the second equation, vy — (2-+i)ve = 0, and we have our eigenvalue/eigenvector pair. Now we compute
the needed quantity. e*v:

B 21 . . 241 ~os(t) 4 isin(P)W2 -+ 1

Simplifying, we get:
[ {(2cos(t) — sin(l)) -+ ¢(2sin(t) + cos(h)) :}

cos(t) + isin(t)
The solution is:

T 2cos(t) — sin(t) 2sin(t) + cos(t)
x(t) = C"‘{ cos(l) }' C“’[ sin(t) ]

We will quickly verify that this is what we would get using the techniques of Chapter 3. From the second
equation, solve for 2y, then use the first equation to get a second order DE for xs.

@y o= oy + 200 = (@ 4 22%) = 2(ah + 2m0) ~ Bae = a2l b aa =0

and we see that we get the identical solution.
Graphically, the solutions are ellipses. In fact, if we solve the differential equation by computing dy/dz,
we get solutions of the form:



Graphical Summary- Complex Eigenvalues

If A = o+ 54, then e”' determines if there is a spiral instead of a periodic solution, and determines if the
solution “blows up” or converges to the origin:

o If o = 0, we get pure periodic solutions (the period depends on 3).
e If o < 0, the origin is a spiral sink.

e If o > 0, the origin is a spiral source.

Scratch Work

L. From our first example, show that these equations are actually multiples of each other:

(= - 2v0 =0

SOLUTION: If you divide the first equation by 1 — 7, we get:

vo =0 = v~ 1+ D=0

1 -4 2 2(1 + 1)
R P § e U = mrmm——
T T e N FERE

which is the second equation.

[y
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v
—

1
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. , ) 2
Given the matrix A = { } with A= 2+ iand v = [ . }, show that

o TrolaMay L 2t 2005(") o (1Y) ALY 2t QSin(t)
zi(t) = Refev) = ¢ [('os(l) singy) |+ 20 =B =0+ sing)

each solves the system (by direct substitution).

SOLUTION: To verify that something is a solution, we want to substitute it into the differential
equation to see il we have a true statement. In this example, we'll first differentiate z,, then compute
Az and see if we have the same quantity.

2¢?t cos(t) " 4e?t cos(t) — 20% sin(t)
e*(cos(l) +sin(t)) | | 2e**(cos(t) + sin(t)) + e (- sin(t) + cos(t))

2 4cos(t) — 2sin(t)
o 3 cos(t) + sin(1)

And for the matrix side of things (factor out the exponential function):

2 [ 3 -2 ] [ 2 cos(t) } o [ 4cos(t) — 2sin(t) }
S = e

1 cos(t) +sin(t) | 3cos(t) -+ sin(t)

A similar computation works for the iinaginary part, zo(1).



Homework Set 3 (Complex Eigenvalues)

In this homework set, we will practice finding eigenvalues and eigenvectors when the eigenvalues are either
complex or the matrix is defective.

-

1. Exercises 1, 3, pg. 409 (Section 7.6, solve with complex evals/evecs)

2. Given the eigenvalues and eigenvectors for some matrix A, write the general solution to x' = Ax.
Furthermore, classify the origin as a sink, source, spiral sink, spiral source, saddle, or none of the
above.

, . 1~
(a) A= 14 2i v o= l: 5

(b) A= -2.3 vy =



