Notes for Section 2.4, \#21

We didn't get a chance to finish the solution to exercise 21 in class, so I thought I should write up a more formal solution.

The problem was to consider $y^{\prime}=y^{1 / 3}$, with $y(0)=0$.
As we discussed in class, we can come up with a couple of solutions without too much work- $y(t)=0$ and $y(t)=\left(\frac{2}{3} t\right)^{3 / 2}$ were the ones we had. The exercise also mentions "Example 3 ", from which we have even more solutions, for any $t_{0}>0$:

$$
y(t)=\left\{\begin{aligned}
0 & \text { if } t<t_{0} \\
\pm\left(\frac{2}{3}\left(t-t_{0}\right)\right)^{3 / 2} & \text { if } t \geq 0
\end{aligned}\right.
$$

The first part of the problem asks us to find a solution that also goes through $(1,1)$. If we use the general form, that would mean:

$$
1=\left(\frac{2}{3}\left(1-t_{0}\right)\right)^{3 / 2} \Rightarrow \frac{3}{2}=1-t_{0} \quad \Rightarrow \quad t_{0}=-\frac{1}{2}
$$

Because $t_{0}>0$, this would not yield a valid solution. Our other solutions also do not go through $(1,1)$, so therefore, there is no solution at all for this.

Now, how about a solution going through $(2,1)$? In that case,

$$
1=\left(\frac{2}{3}\left(2-t_{0}\right)\right)^{3 / 2} \quad \Rightarrow \quad \frac{3}{2}=2-t_{0} \quad \Rightarrow \quad t_{0}=\frac{1}{2}
$$

Therefore, the solution is from the general form with $t_{0}=1 / 2$.
In the final part, consider all possible solutions to the IVP. If we want a solution to go through $\left(y_{0}, 2\right)$, is y_{0} restricted, or can it be any number? Doing a similar computation to the one before,

$$
y_{0}=\left(\frac{2}{3}\left(2-t_{0}\right)\right)^{3 / 2} \quad \Rightarrow \quad \frac{3}{2} y_{0}^{2 / 3}=2-t_{0} \quad \Rightarrow \quad t_{0}=2-\frac{3}{2} y_{0}^{2 / 3}
$$

We would require $t_{0}>0$, so that does put a restriction on y_{0} :

$$
2-\frac{3}{2} y_{0}^{2 / 3}>0 \quad \Rightarrow \quad \frac{3}{2} y_{0}^{2 / 3}<2 \quad \Rightarrow \quad y_{0}^{2 / 3}<\frac{4}{3}
$$

Note that y_{0} could be negative, so raising both sides to the $3 / 2$ power, take the absolute value:

$$
\left|y_{0}\right|<(4 / 3)^{3 / 2}
$$

Lots of algebra for that one!

