Quiz 8 (Take Home) Solutions

1. Find the radius and interval of convergence for the series $\sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n 3^{n}}$

SOLUTION: Use the Ratio Test:

$$
\lim _{n \rightarrow \infty} \frac{n 3^{n}}{(n+1) 3^{n+1}}|x-1|=\lim _{n \rightarrow \infty} \frac{n}{n+1} \frac{1}{3}|x-1|=\frac{|x-1|}{3}<1 \quad \Rightarrow \quad|x-1|<3
$$

The radius is 3 . Check the endpoints, $x=4$ and $x=-2$.
At $x=4$, the sum becomes the (divergent) harmonic series:

$$
\sum_{n=1}^{\infty} \frac{(4-1)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

At $x=-2$, the sum becomes the (convergent) alternating harmonic series:

$$
\sum_{n=1}^{\infty} \frac{(-2-1)^{n}}{n 3^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}
$$

Therefore, the interval of convergence is $[-2,4)$.
2. Exercise \#24 in 5.1. We want to rewrite the given expression as a sum whose generic term involves x^{n}.

$$
\left(1-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n}
$$

Now, to bring the sums together, they need to start with the same power. The first sum starts with x^{0}, the second sum starts with x^{2}. However, in the second term, we are able to simply start the sum at $n=0$ instead, because the first two terms would remain zero:

$$
\left(1-x^{2}\right) \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}
$$

Writing the generic sum as $\sum_{m=0}^{\infty}(?) x^{m}$, we see that in the first sum, $m=n-2$ and in the second sum, $m=n$. Putting these together,

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}-\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}=\sum_{m=0}^{\infty}\left((m+2)(m+1) a_{m+2}-m(m+1) a_{m}\right) x^{m}
$$

3. For the IVP in \#8, Section 5.2, find the recurrence relation (as we did in the class notes).

We substitute the following into the given IVP, $x y^{\prime \prime}+y^{\prime}+x y=0$, with $y(0)=a_{0}$ and $y^{\prime}(0)=a_{1}$.

$$
y=\sum_{n=0}^{\infty} a_{n}(x-1)^{n}, \quad y^{\prime}=\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1} \quad y^{\prime \prime}=\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}
$$

We get:

$$
x \sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}+\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}+x \sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0
$$

In order to incorporate x into the sum, we'll need to write $x=(x-1)+1$ in front of $y^{\prime \prime}$ and in front of y. Notice that this will create 5 sums- Two from the second derivative, one from the first, and two for the y term.

$$
\begin{gathered}
\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-1}+\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}+\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}+ \\
\sum_{n=0}^{\infty} a_{n}(x-1)^{n+1}+\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=0
\end{gathered}
$$

Normally we could make all the sum begin with $(x-1)^{0}$, but the fourth sum will prevent this. Instead, we'll start every sum with $(x-1)^{1}$, removing the zeroth term if needed. That is, we'll rewrite each sum (the five sums are below):

$$
\begin{gathered}
\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-1} \text { Ready as is... Let } m=n-1 \\
\sum_{n=2}^{\infty} n(n-1) a_{n}(x-1)^{n-2}=2 a_{2}+\sum_{n=3}^{\infty} n(n-1) a_{n}(x-1)^{n-2} \text { Let } m=n-2 \\
\sum_{n=1}^{\infty} n a_{n}(x-1)^{n-1}=a_{1}+\sum_{n=2}^{\infty} n a_{n}(x-1)^{n-1} \text { Let } m=n-1 \\
\sum_{n=0}^{\infty} a_{n}(x-1)^{n+1} \text { Ready as is... Let } m=n+1 \\
\sum_{n=0}^{\infty} a_{n}(x-1)^{n}=a_{0}+\sum_{n=1}^{\infty} a_{n}(x-1)^{n} \text { Let } m=n
\end{gathered}
$$

Putting them all together (sorry about breaking it up):

$$
\begin{gathered}
a_{0}+a_{1}+2 a_{2}+ \\
\sum_{m=1}^{\infty}\left((m+1) m a_{m+1}+(m+2)(m+1) a_{m+2}+(m+1) a_{m+1}+a_{m-1}+a_{m}\right)(x-1)^{m}=0
\end{gathered}
$$

A little more algebra- Simplifying the terms with a_{m+1}, we have:

$$
(m+1) m a_{m+1}+(m+1) a_{m+1}=(m+1) a_{m+1}(m+1)=(m+1)^{2} a_{m+1}
$$

Therefore, the general recurrence is given by:

$$
a_{m+2}=\frac{-(m+1)^{2} a_{m+1}-a_{m}-a_{m-1}}{(m+2)(m+1)}
$$

4. For $y^{\prime \prime}+\sin (x) y^{\prime}+\cos (x) y=0$, find the first five terms of the power series expansion for $y(x)$ as we did in the first section of these notes. (Note: Zeros do count as a term). We have $y(0)=0$ and $y^{\prime}(0)=1$. For the remaining terms:
SOLUTION:

$$
\begin{gathered}
y^{\prime \prime}=-\sin (x) y^{\prime}-\cos (x) y \quad \Rightarrow \quad y^{\prime \prime}(0)=0-0=0 \\
y^{\prime \prime \prime}=-\cos (x) y^{\prime}-\sin (x) y^{\prime \prime}+\sin (x) y-\cos (x) y^{\prime}=-2 \cos (x) y^{\prime}+\sin (x)\left(y-y^{\prime \prime}\right) \quad \Rightarrow \quad y^{\prime \prime \prime}(0)=-2
\end{gathered}
$$

Similarly,

$$
y^{(4)}=2 \sin (x) y^{\prime}-2 \cos (x) y^{\prime \prime}+\cos (x)\left(y-y^{\prime \prime}\right)+\sin (x)\left(y^{\prime}-y^{\prime \prime \prime}\right)=0
$$

Therefore, we have:

$$
y(x)=0+x+0-\frac{2}{3!} x^{3}+0+\cdots
$$

