## Exam 2 Summary of Topics

The exam will cover material from Section 3.1 to 3.8. You will be allowed to use your notes, the textbook, a calculator, and anything on the class website to help you.

# Structure and Theory (Mostly 3.2)

The goal of the theory was to establish the structure of solutions to the second order IVP:

$$y'' + p(t)y' + q(t)y = g(t), \quad y(t_0) = y_0$$

We saw that two functions form a fundamental set of solutions to the homogeneous DE if the Wronskian is not zero at  $t_0$ .

- 1. Vocabulary: Linear operator, general solution, fundamental set of solutions, linear combination of a set of functions.
- 2. Theorems:
  - The Existence and Uniqueness Theorem for y'' + p(t)y' + q(t)y = g(t).
  - Principle of Superposition.
  - Abel's Theorem.

If  $y_1, y_2$  are solutions to y'' + p(t)y' + q(t)y = 0, then the Wronskian,  $W(y_1, y_2)$ , is either always zero or never zero on the interval for which the solutions are valid.

That is because the Wronskian may be computed as:

$$W(y_1, y_2)(t) = Ce^{-\int p(t) dt}$$

• The Fundamental Set of Solutions: y'' + p(t)y' + q(t)y = 0

We can guarantee that we can always find a fundamental set of solutions (where p, q are continuous). We did that by appealing to the Existence and Uniqueness Theorem for the following two initial value problems:

- 
$$y_1$$
 solves  $y'' + p(t)y' + q(t)y = 0$  with  $y(t_0) = 1, y'(t_0) = 0$ 

$$-y_2$$
 solves  $y'' + p(t)y' + q(t)y = 0$  with  $y(t_0) = 0, y'(t_0) = 1$ 

3. The Structure of Solutions to y'' + p(t)y' + q(t)y = g(t),  $y(t_0) = y_0, y'(t_0) = v_0$ 

Given a fundamental set of solutions to the homogeneous equation,  $y_1, y_2$ , then there is a solution to the initial value problem, written as:

$$y(t) = C_1 y_1(t) + C_2 y_2(t) + y_n(t)$$

where  $y_p(t)$  solves the non-homogeneous equation.

In fact, if we have:

$$y'' + p(t)y' + q(t)y = g_1(t) + g_2(t) + \dots + g_n(t),$$

we can solve by splitting the problem up into smaller problems:

- $y_1, y_2$  form a fundamental set of solutions to the homogeneous equation.
- $y_{p_1}$  solves  $y'' + p(t)y' + q(t)y = g_1(t)$
- $y_{p_2}$  solves  $y'' + p(t)y' + q(t)y = g_2(t)$  and so on..
- $y_{p_n}$  solves  $y'' + p(t)y' + q(t)y = g_n(t)$

and the full solution is:

$$y(t) = C_1 y_1 + C_2 y_2 + y_{p_1} + y_{p_2} + \ldots + y_{p_n}$$

# Finding the Homogeneous Solution

We had two distinct equations to solve-

$$ay'' + by' + cy = 0$$
 or  $y'' + p(t)y' + q(t)y = 0$ 

First we look at the case with constant coefficients, then we look at the more general case.

#### **Constant Coefficients**

To solve

$$ay'' + by' + cy = 0$$

we use the ansatz  $y = e^{rt}$ . Then we form the associated characteristic equation:

$$ar^2 + br + c = 0$$
  $\Rightarrow$   $r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ 

so that the solutions depend on the discriminant,  $b^2 - 4ac$  in the following way:

•  $b^2 - 4ac > 0 \Rightarrow$  two distinct real roots  $r_1, r_2$ . The general solution is:

$$y_h(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

If a, b, c > 0 (as in the Spring-Mass model) we can further say that  $r_1, r_2$  are negative. We would say that this system is OVERDAMPED.

•  $b^2 - 4ac = 0 \Rightarrow$  one real root r = -b/2a. Then the general solution is:

$$y_h(t) = e^{-(b/2a)t} (C_1 + C_2 t)$$

If a, b, c > 0 (as in the Spring-Mass model), the exponential term has a negative exponent. In this case (one real root), the system is CRITICALLY DAMPED.

•  $b^2 - 4ac < 0 \Rightarrow$  two complex conjugate solutions,  $r = \alpha \pm i\beta$ . Then the solution is:

$$y_h(t) = e^{\alpha t} \left( C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$$

If a, b, c > 0, then  $\alpha = -(b/2a) < 0$ . In the case of complex roots, the system is said to the UNDER-DAMPED. If  $\alpha = 0$  (this occurs when there is no damping), we get pure periodic motion, with period  $2\pi/\beta$  or circular frequency  $\beta$ .

### Solving the more general case

We had two methods for solving the more general equation:

$$y'' + p(t)y' + q(t)y = 0$$

but each method relied on already having one solution,  $y_1(t)$ . Given that situation, we can solve for  $y_2$  (so that  $y_1, y_2$  form a fundamental set), by one of two methods:

• By use of the Wronskian: There are two ways to compute this,

$$-W(y_1, y_2) = Ce^{-\int p(t) dt}$$
 (This is from Abel's Theorem)

$$- W(y_1, y_2) = y_1 y_2' - y_2 y_1'$$

Therefore, these are equal, and  $y_2$  is the unknown:  $y_1y_2' - y_2y_1' = Ce^{-\int p(t) dt}$ 

• Reduction of order: Given that  $y_1$  solves the homog DE, we look for a second solution,  $y_2$ . We assume  $y_2 = v(t)y_1(t)$ . Now substitute  $y_2$  into the DE, and use the fact that  $y_1$  solves the homogeneous equation, and the DE reduces to:

$$y_1v'' + (2y_1' + py_1)v' = 0$$

## Finding the particular solution.

Our two methods were: Method of Undetermined Coefficients and Variation of Parameters.

#### Method of Undetermined Coefficients

This method is motivated by the observation that, a linear operator of the form L(y) = ay'' + by' + cy, acting on certain classes of functions, returns the same class. In summary, the table from the text:

| if $g_i(t)$ is:                                  | The ansatz $y_{p_i}$ is:                                                                                        |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| $P_n(t)$                                         | $t^s(a_0 + a_1t + \dots a_nt^n)$                                                                                |
| $P_n(t)e^{\alpha t}$                             | $\begin{vmatrix} t^s(a_0 + a_1t + \dots a_nt^n) \\ t^s e^{\alpha t}(a_0 + a_1t + \dots + a_nt^n) \end{vmatrix}$ |
| $P_n(t)e^{\alpha t}\sin(\mu t)$ or $\cos(\mu t)$ | $t^{s}e^{\alpha t} ((a_0 + a_1t + \ldots + a_nt^n)\sin(\mu t)$                                                  |
|                                                  | $+ (b_0 + b_1 t + \ldots + b_n t^n) \cos(\mu t)$                                                                |

The  $t^s$  term comes from an analysis of the homogeneous part of the solution. That is, multiply by t or  $t^2$  so that no term of the ansatz is included as a term of the homogeneous solution.

#### Variation of Parameters:

Given y'' + p(t)y' + q(t)y = g(t), with  $y_1, y_2$  solutions to the homogeneous equation, we write the ansatz for the particular solution as:

$$y_p = u_1 y_1 + u_2 y_2$$

From our analysis, we saw that  $u_1, u_2$  were required to solve:

$$\begin{array}{lll} u_1'y_1 + u_2'y_2 &= 0 \\ u_1'y_1' + u_2'y_2' &= g(t) \end{array} \quad \text{Cramer's Rule} \quad \Rightarrow \quad u_1' = \frac{-y_2g}{W(y_1,y_2)} \qquad u_2' = \frac{y_1g}{W(y_1,y_2)}$$

## Analysis of the Oscillator Model

- 1. Unforced:  $mu'' + \gamma u' + ku = 0$ 
  - (a) No damping,  $\gamma = 0$ : Natural frequency is  $\sqrt{k/m}$
  - (b) With damping,  $\gamma > 0$ : Underdamped, Critically Damped, Overdamped
- 2. Periodic Forcing:  $mu'' + \gamma u' + ku = F_0 \cos(\omega t)$ 
  - (a) No damping: When does beating, resonance occur:  $u'' + \omega_0^2 u = F \cos(\omega t)$ . "Beating" occurs when  $\omega$  is close to  $\omega_0$ . What is the period of one beat? "Resonance" occurs when  $\omega = \omega_0$ . The solution becomes unbounded.
  - (b) With damping: Be able to solve using complexification.
    - Find just the amplitude and phase angle for the particular solution only.
    - Find the  $\omega$  that maximizes the amplitude of the forced response (or particular part).

### Other Material

- 1. Be familiar with complex numbers, their polar form, and basic operations using complex numbers.
- 2. Know and use Euler's Formula:  $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ .
- 3. Be able to write

$$A\cos(\omega t) + B\sin(\omega t) = R\cos(\omega t - \delta)$$