Sample Questions (Chapter 3, Math 244)

- 1. State the Existence and Uniqueness theorem for linear, second order differential equations (non-homogeneous is the most general form):
- 2. True or False?
 - (a) The characteristic equation for y'' + y' + y = 1 is $r^2 + r + 1 = 1$
 - (b) The characteristic equation for $y'' + xy' + e^x y = 0$ is $r^2 + xr + e^x = 0$
 - (c) The function y=0 is always a solution to a second order linear homogeneous differential equation.
 - (d) In using the Method of Undetermined Coefficients, the ansatz $y_p = (Ax^2 + Bx + C)(D\sin(x) + E\cos(x))$ is equivalent to

$$y_p = (Ax^2 + Bx + C)\sin(x) + (Dx^2 + Ex + F)\cos(x)$$

(e) Consider the function:

$$y(t) = \cos(t) - \sin(t)$$

Then amplitude is 1, the period is 1 and the phase shift is 0.

3. Find values of a for which **any** solution to:

$$y'' + 10y' + ay = 0$$

will tend to zero (that is, $\lim_{t\to 0} y(t) = 0$.

- 4. Compute the Wronskian between $f(x) = \cos(x)$ and g(x) = 1.
 - Can these be two solutions to a second order linear homogeneous differential equation? Be specific. (Hint: Abel's Theorem)
- 5. Construct the operator associated with the differential equation: $y' = y^2 4$. Is the operator linear? Show that your answer is true by using the definition of a linear operator.
- 6. Find the solution to the initial value problem:

$$u'' + u = \begin{cases} 3t & \text{if } 0 \le t \le \pi \\ 3(2\pi - t) & \text{if } \pi < t < 2\pi \\ 0 & \text{if } t \ge 2\pi \end{cases} \qquad u(0) = 0 \quad u'(0) = 0$$

- 7. Solve: $u'' + \omega_0^2 u = F_0 \cos(\omega t)$, u(0) = 0 u'(0) = 0 if $\omega \neq \omega_0$ using the Method of Undetermined Coefficients.
- 8. Compute the solution to: $u'' + \omega_0^2 u = F_0 \cos(\omega_0 t)$ u(0) = 0 u'(0) = 0 two ways:

- Start over, with Method of Undetermined Coefficients
- Take the limit of your answer from Question 6 as $\omega \to \omega_0$.
- 9. For the following question, recall that the acceleration due to gravity is 32 ft/sec².

An 8 pound weight is attached to a spring from the ceiling. When the weight comes to rest at equilibrium, the spring has been stretched 2 feet. The damping constant for the system is 1—lb-sec/ft. If the weight is raised 6 inches above equilibrium and given an upward velocity of 1 ft/sec, find the equation of motion for the weight.

10. Given that $y_1 = \frac{1}{t}$ solves the differential equation:

$$t^2y'' - 2y = 0$$

Find a fundamental set of solutions using Abel's Theorem.

- 11. Suppose a mass of 0.01 kg is suspended from a spring, and the damping factor is $\gamma = 0.05$. If there is no external forcing, then what would the spring constant have to be in order for the system to *critically damped? underdamped?*
- 12. Give the full solution, using any method(s). If there is an initial condition, solve the initial value problem.

(a)
$$y'' + 4y' + 4y = t^{-2}e^{-2t}$$

(b)
$$y'' - 2y' + y = te^t + 4$$
, $y(0) = 1$, $y'(0) = 1$.

(c)
$$y'' + 4y = 3\sin(2t)$$
, $y(0) = 2$, $y'(0) = -1$.

(d)
$$y'' + 9y = \sum_{m=1}^{N} b_m \cos(m\pi t)$$

- 13. Rewrite the expression in the form a + ib: (i) 2^{i-1} (ii) $e^{(3-2i)t}$ (iii) $e^{i\pi}$
- 14. Write a + ib in polar form: (i) $-1 \sqrt{3}i$ (ii) 3i (iii) -4 (iv) $\sqrt{3} i$
- 15. Find a second order linear differential equation with constant coefficients whose general solution is given by:

$$y(t) = C_1 + C_2 e^{-t} + \frac{1}{2}t^2 - t$$

16. Determine the longest interval for which the IVP is certain to have a unique solution (Do not solve the IVP):

$$t(t-4)y'' + 3ty' + 4y = 2$$
 $y(3) = 0$ $y'(3) = -1$

17. Let L(y) = ay'' + by' + cy for some value(s) of a, b, c.

If $L(3e^{2t}) = -9e^{2t}$ and $L(t^2 + 3t) = 5t^2 + 3t - 16$, what is the particular solution to:

$$L(y) = -10t^2 - 6t + 32 + e^{2t}$$

18. Use Variation of Parameters to find a particular solution to the following, then verify your answer using the Method of Undetermined Coefficients:

$$4y'' - 4y' + y = 16e^{t/2}$$

19. Compute the Wronskian of two solutions of the given DE without solving it:

$$x^2y'' + xy' + (x^2 - \alpha^2)y = 0$$

- 20. If y'' y' 6y = 0, with y(0) = 1 and $y'(0) = \alpha$, determine the value(s) of α so that the solution tends to zero as $t \to \infty$.
- 21. Give the general solution to $y'' + y = \frac{1}{\sin(t)} + t$
- 22. A mass of 0.5 kg stretches a spring an additional 0.05 meters past its natural length.

 (i) Find the spring constant. (ii) Does a stiff spring have a large spring constant or a small spring constant (explain).
- 23. A mass of $\frac{1}{2}$ kg is attached to a spring with spring constant 2 (kg/sec²). The spring is pulled down an additional 1 meter then released. Find the equation of motion if the damping constant is c=2 as well:
- 24. Write the following as $R\cos(\omega t \delta)$: $2\cos(3t) + \sin(3t)$.
- 25. Find the general solution by complexification: $y'' + 3y' + 2y = \cos(t)$.
- 26. Find the amplitude and phase angle only for the particular solution to $u'' + u' + 2u = \cos(t)$.
- 27. Consider $u'' + u' + u = \cos(\omega t)$. Find the value of ω that will maximize the amplitude of the response.

28. Match the solution curve to its IVP (There is one DE with no graph, and one graph with no DE- You should not try to completely solve each DE).

(a)
$$5y'' + y' + 5y = 0$$
, $y(0) = 10$, $y'(0) = 0$

(b)
$$y'' + 5y' + y = 0$$
, $y(0) = 10$, $y'(0) = 0$

(c)
$$y'' + y' + \frac{5}{4}y = 0$$
, $y(0) = 10$, $y'(0) = 0$

(d)
$$5y'' + 5y = 4\cos(t), y(0) = 0, y'(0) = 0$$

(e)
$$y'' + \frac{1}{2}y' + 2y = 10$$
, $y(0) = 0$, $y'(0) = 0$

