
Review Solutions Exam 2

1. State the Existence and Uniqueness theorem for linear, second order differential equa-
tions (non-homogeneous is the most general form):

SOLUTION:

Let y′′ + p(t)y′ + q(t)y = g(t), with y(t0) = y0 and y′(t0) = v0. Then if p, q and g are
all continuous on an open interval I containing t0, a unique solution exists to the IVP,
valid for all t in I.

2. True or False?

(a) The characteristic equation for y′′ + y′ + y = 1 is r2 + r + 1 = 1

SOLUTION: False. The characteristic equation is for the homogeneous equation,
r2 + r + 1 = 0

(b) The characteristic equation for y′′ + xy′ + exy = 0 is r2 + xr + ex = 0

SOLUTION: False. The characteristic equation was defined only for DEs with
constant coefficients.

(c) The function y = 0 is always a solution to a second order linear homogeneous
differential equation.

SOLUTION: True. It is true generally- If L is a linear operator, then L(0) = 0.

(d) In using the Method of Undetermined Coefficients, the ansatz yp = (Ax2 +Bx+
C)(D sin(x) + E cos(x)) is equivalent to

yp = (Ax2 +Bx+ C) sin(x) + (Dx2 + Ex+ F ) cos(x)

SOLUTION: False- We have to be able to choose the coefficients for each poly-
nomial (for the sine and cosine) independently of each other. In the form:

(Ax2 +Bx+ C)(D sin(x) + E cos(x))

the polynomials for the sine and cosine are constant multiples of each other, which
may not necessarily hold true. That’s why we need one polynomial for the sine,
and one for the cosine (so the second guess is the one to use).

(e) Consider the function:
y(t) = cos(t)− sin(t)

Then amplitude is 1, the period is 1 and the phase shift is 0.

SOLUTION: False. For this question to make sense, we have to first write the
function as R cos(ω(t− δ)). In this case, the amplitude is R:

R =
√

12 + (−1)2 =
√

2

The period is 2π (the circular frequency, or natural frequency, is 1), and the phase
shift δ is:

tan(δ) = −1 ⇒ δ = −π
4

1



3. Find values of a for which any solution to:

y′′ + 10y′ + ay = 0

will tend to zero (that is, limt→∞ y(t) = 0.

SOLUTION: Use the characteristic equation and check the 3 cases (for the discrimi-
nant). That is,

r2 + 10r + a = 0 ⇒ r =
−10±

√
100− 4a

2

We check some special cases:

• If 100− 4a = 0 (or a = 25), we get a double root, r = −5,−5, or yh = e−5t(C1 +
C2t), and all solutions tend to zero.

• If the roots are complex, then we can write r = −5± βi, and we get

yh = e−5t(C1 cos(βt) + C2 sin(βt))

and again, this will tend to zero for any choice of C1, C2.

• In the case that a < 25, we have to be a bit careful. While it is true that both
roots will be real, we also want them to both be negative for all solutions to tend
to zero.

– When will they both be negative? If 100 − 4a < 100 (or
√

100− 4a < 10).
This happens as long as a > 0.

– If a = 0, the roots will be r = −10, 0, and yh = C1e
−10t + C2- Therefore, I

could choose C1 = 0 and C2 6= 0, and my solution will not go to zero.

– If a < 0, the roots will be mixed in sign (one positive, one negative), so the
solutions will not all tend to zero.

CONCLUSION: If a > 0, all solutions to the homogeneous will tend to zero.

4. • Compute the Wronskian between f(x) = cos(x) and g(x) = 1.

SOLUTION: W (cos(x), 1) = sin(x)

• Can these be two solutions to a second order linear homogeneous differential
equation? Be specific. (Hint: Abel’s Theorem)

SOLUTION: Abel’s Theorem tells us that the Wronskian between two solutions
to a second order linear homogeneous DE will either be identically zero or never
zero on the interval on which the solution(s) are defined.

Therefore, as long as the interval for the solutions do not contain a multiple of
π (for example, (0, π), (π, 2π), etc), then it is possible for the Wronskian for two
solutions to be sin(x).
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5. Construct the operator associated with the differential equation: y′ = y2 − 4. Is the
operator linear? Show that your answer is true by using the definition of a linear
operator.

SOLUTION: The operator is found by getting all terms in y to one side of the equation,
everything else on the other. In this case, we have:

L(y) = y′ − y2

This is not a linear operator. We can check using the definition:

L(cy) = cy′ − c2y2 6= cL(y)

Furthermore,

L(y1 + y2) = (y′1 + y′2)− (y1 + y2)
2 6= L(y1) + L(y2)

6. Find the solution to the initial value problem:

u′′ + u =


3t if 0 ≤ t ≤ π

3(2π − t) if π < t < 2π
0 if t ≥ 2π

u(0) = 0 u′(0) = 0

SOLUTION: Without regards to the initial conditions, we can solve the three non-
homogeneous equations. In each case, the homogeneous part of the solution is c1 cos(t)+
c2 sin(t).

• u′′+u = 3t. We would start with yp = At+B. Substituting, we get: At+B = 3t,
so A = 3 and B = 0- Therefore, the general solution in this case is:

u(t) = c1 cos(t) + c2 sin(t) + 3t

• u′′ + u = 6π − 3t. From our previous analysis, the solution is:

u(t) = c1 cos(t) + c2 sin(t) + 6π − 3t

• The last part is just the homogeneous equation.

The only thing left is to find c1, c2 in each of the three cases so that the overall function
u is continuous:

• u(0) = 0, u′(0) = 0⇒

u(t) = −3 sin(t) + 3t 0 ≤ t ≤ π

• u(π) = 3π and u′(π) = 6, so:

u(t) = −9 sin(t) + 6π − 3t π < t < 2π
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• u(2π) = 0, u′(2π) = −12:

u(t) = −12 sin(t) t ≥ 2π

7. Solve: u′′ + ω2
0u = F0 cos(ωt), u(0) = 0 u′(0) = 0 if ω 6= ω0 using the Method of

Undetermined Coefficients.

SOLUTION: The characteristic equation is: r2 + ω2
0 = 0, or r = ±ω0i. Therefore,

uh = C1 cos(ω0t) + C2 sin(ω0t)

Using the Method of Undetermined Coefficients, up = A cos(ωt) + B sin(ωt), and we
put that into the DE:

ω2
0u = Aω2

0 cos(ωt) +Bω2
0 sin(ωt)

u′′ = −Aω2 cos(ωt) −Bω2 sin(ωt)
F0 cos(ωt) = A(ω2

0 − ω2) cos(ωt) +B(ω2
0 − ω2) sin(ωt)

Therefore,

A =
F0

ω2
0 − ω2

B = 0

so that the overall solution is:

u(t) = C1 cos(ω0t) + C2 sin(ω0t) +
F0

ω2
0 − ω2

cos(ωt)

Put in the initial conditions u(0) = 0 and u′(0) = 0 to see that C1 = − F0

ω2
0−ω2 and

C2 = 0.

8. Compute the solution to: u′′ + ω2
0u = F0 cos(ω0t) u(0) = 0 u′(0) = 0 two ways:

• Start over, with Method of Undetermined Coefficients

SOLUTION: The part that changes is the particular part of the solution- We have
to multiply by t: Let up = At cos(ω0t) +Bt sin(ω0t). Then:

ω2
0up = (Aω2

0t ) cos(ω0t) +(Bω2
0t ) sin(ω0t)

u′′p = (−Aω2
0t+ 2Bω0) cos(ω0t) +(−Bω2

0t− 2Aw) sin(ω0t)

F0 cos(ω0t) = 2Bω0 cos(ω0t) −2Aω0 sin(ω0t)

Therefore, B = F0

2ω0
and A = 0, so that

u(t) = C1 cos(ω0t) + C2 sin(ω0t) +
F0

2ω0

t sin(ω0t)

Taking into account the initial conditions, we get C1 = C2 = 0.
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• Take the limit of your answer from Question 6 as ω → ω0 (Typo: Should be
Question 7).

SOLUTION:

lim
ω→ω0

F0(cos(ωt)− cos(ω0t)

ω2
0 − ω2

=?

We can use l’Hospital’s Rule (differentiate with respect to ω!):

= lim
ω→ω0

−F0t sin(ωt)

−2ω
=

F0

2ω0t
sin(ω0t)

9. For the following question, recall that the acceleration due to gravity is 32 ft/sec2.

An 8 pound weight is attached to a spring from the ceiling. When the weight comes
to rest at equilibrium, the spring has been stretched 2 feet. The damping constant for
the system is 1−lb-sec/ft. If the weight is raised 6 inches above equilibrium and given
an upward velocity of 1 ft/sec, find the equation of motion for the weight.

SOLUTION: First the constants. Since mg− kL = 0, we find that mg = 8, so 2k = 8,
or k = 4.

We are given that γ = 1, and since 8 = mg, then m = 8/32 = 1/4.

1

4
y′′ + y′ + 4y = 0 y(0) = −1

2
y′(0) = −1

Or we could write: y′′ + 4y′ + 16y = 0. Solving the characteristic equation, we get

r2 + 4r + 16 = 0 ⇒ r =
−4±

√
42 − 4 · 16

2
=
−4± 4

√
3 i

2
= −2± 2

√
3 i

Therefore, the general solution is:

y(t) = e−2t
(
C1 cos(2

√
3t) + C2 sin(2

√
3 t
)

Solving the IVP, differentiate to get the equations for C1, C2:

y′ = −2e−2t
(
C1 cos(2

√
3t) + C2 sin(2

√
3 t
)

+ 2
√

3e−2t
(
C2 cos(2

√
3t)− C1 sin(2

√
3 t
)

Therefore,
−1

2
= C1

−1 = −2C1 + 2
√

3C2
⇒ C1 = −1

2
C2 = − 1√

3

10. Given that y1 = 1
t

solves the differential equation:

t2y′′ − 2y = 0

Find a fundamental set of solutions.

SOLUTION: I like using the Wronskian for these-
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First, rewrite the differential equation in standard form:

y′′ − 2

t2
y = 0

Then p(t) = 0 and W (y1, y2) = Ce0 = C. On the other hand, the Wronskian is:

W (y1, y2) =
1

t
y′2 +

1

t2
y2

Put these together:
1

t
y′2 +

1

t2
y2 = C y′2 +

1

t
y2 = Ct

The integrating factor is t,

(ty2)
′ = Ct2 ⇒ ty2 = C1t

3 + C2 ⇒ C1t
2 +

C2

t

Notice that we have both parts of the homogeneous solution, y1 = 1
t

and y2 = t2.

Alternative Solution: Use Reduction of Order, where we assume that

y2 = vy1 =
v

t
⇒ y′2 =

v′t− v
t2

=
v′

t
− v

t2
⇒ y′′2 =

v′′

t
− 2

v′

t2
+ 2

v

t3

Substituting this back into the DE, we get

tv′′ − 2v′ = 0 ⇒ v′

t2
= C1 ⇒ v =

C1

3
t3 + C2 ⇒ y2 = C3t

2 +
C2

t

and again we see that we can take y2 = t2.

11. Suppose a mass of 0.01 kg is suspended from a spring, and the damping factor is
γ = 0.05. If there is no external forcing, then what would the spring constant have to
be in order for the system to critically damped? underdamped?

SOLUTION: We can find the differential equation:

0.01u′′ + 0.05u′ + ku = 0 ⇒ u′′ + 5u′ + 100ku = 0

Then the system is critically damped if the discriminant (from the quadratic formula)
is zero:

b2 − 4ac = 25− 4 · 100k = 0 ⇒ k =
25

400
=

1

16

The system is underdamped if the discriminant is negative:

25− 400k < 0 ⇒ k >
1

16

12. Give the full solution, using any method(s). If there is an initial condition, solve the
initial value problem.
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(a) y′′ + 4y′ + 4y = t−2e−2t

Using the Variation of Parameters, yp = u1y1 + u2y2, we have:

y1 = e−2t y2 = te−2t g(t) =
e−2t

t2

with a Wronskian of e−4t. You should find that:

u′1 = −1

t
u′2 =

1

t2

u1 = − ln(t) u2 = −1

t

so yp = − ln(t)e−2t − e−2t. This last term is part of the homogeneous solution, so
this simplifies to − ln(t)e−2t. Now that we have all the parts,

y(t) = e−2t(C1 + C2t)− ln(t)e−2t

You should note that here we have to use Variation of Parameters, since the
forcing function is not one of the forms for Method of Undetermined Coefficients.

(b) y′′ − 2y′ + y = tet + 4, y(0) = 1, y′(0) = 1.

With the Method of Undetermined Coefficients, we first get the homogeneous
part of the solution,

yh(t) = et(C1 + C2t)

Now we construct our ansatz (Multiplied by t after comparing to yh):

g1 = tet ⇒ yp1 = (At+B)et · t2

Substitute this into the differential equation to solve for A,B:

yp1 = (At3 +Bt2)et y′p1 = (At3 + (3A+B)t2 + 2Bt)et

y′′p1 = (At3 + (6A+B)t2 + (6A+ 4B)t+ 2B)et

Forming y′′p1 − 2y′p1 + yp1 = tet, we should see that A = 1
6

and B = 0, so that
yp1 = 1

6
t3et.

The next one is a lot easier! yp2 = A, so A = 4, and:

y(t) = et(C1 + C2t) +
1

6
t3et + 4

with y(0) = 1, C1 = −3. Solving for C2 by differentiating should give C2 = 4.
The full solution:

y(t) = et
(

1

6
t3 + 4t− 3

)
+ 4
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(c) y′′ + 4y = 3 sin(2t), y(0) = 2, y′(0) = −1.

The homogeneous solution is C1 cos(2t) + C2 sin(2t). Just for fun, you could try
Variation of Parameters. We’ll outline the Method of Undetermined Coefficients:

yp = (A sin(2t) +B cos(2t))t = At sin(2t) +Bt cos(2t)

y′′p = (−4At− 4B) sin(2t) + (4A− 4Bt) cos(2t)

taking y′′p + 4yp = 3 sin(2t), we see that A = 0, B = −3
4
, so the solution is:

y = c1 cos(2t) + c2 sin(2t)− 3

4
t cos(2t)

With y(0) = 2, c1 = 2. Differentiating to solve for c2, we find that c2 = −1/8.

(d) y′′ + 9y =
N∑
m=1

bm cos(mπt)

The homogeneous part of the solution is C1 cos(3t) + C2 sin(3t). We see that
3 6= mπ for m = 1, 2, 3, . . ..

The forcing function is a sum of N functions, the mth function is:

gm(t) = bm cos(mπt) ⇒ ypm = A cos(mπt) +B sin(mπt)

Differentiating,

y′′pm = −m2π2A cos(mπt)−m2π2B sin(mπt)

so that y′′pm + 9ypm = (9−m2π2)A cos(mπt) + (9−m2π2)B sin(mπt).

Solving for the coefficients, we see that A = bm/(9−m2π2) and B = 0. Therefore,
the full solution is:

y(t) = C1 cos(3t) + C2 sin(3t) +
N∑
m=1

bm
9−m2π2

cos(mπt)

13. Rewrite the expression in the form a+ ib: (i) 2i−1 (ii) e(3−2i)t (iii) eiπ

NOTE for the SOLUTION: Remember that for any non-negative number A, we can
write A = eln(A).

• 2i−1 = eln(2
i−1) = e(i−1) ln(2) = e− ln(2)ei ln(2) = 1

2
(cos(ln(2)) + i sin(ln(2)))

• e(3−2i)t = e3te−2ti = e3t (cos(−2t) + i sin(−2t)) = e3t (cos(2t)− i sin(2t))

(Recall that cosine is an even function, sine is an odd function).

• eiπ = cos(π) + i sin(π) = −1

14. Write a+ ib in polar form: (i) −1−
√

3i (ii) 3i (iii) −4 (iv)
√

3− i
SOLUTIONS:
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(i) r =
√

1 + 3 = 2, θ = −2π/3 (look at its graph, use 30-60-90 triangle):

−1−
√

3i = 2e−
2π
3
i

(ii) 3i = 3e
π
2
i

(iii) −4 = 4eπi

(iv)
√

3− i = 2e−
π
6
i

15. Find a second order linear differential equation with constant coefficients whose general
solution is given by:

y(t) = C1 + C2e
−t +

1

2
t2 − t

SOLUTION: Work backwards from the characteristic equation to build the homoge-
neous DE (then figure out the rest):

The roots to the characteristic equation are r = 0 and r = −1. The characteristic equa-
tion must be r(r + 1) = 0 (or a constant multiple of that). Therefore, the differential
equation is:

y′′ + y′ = 0

For yp = 1
2
t2 − t to be the particular solution,

y′′p + y′p = (1) + (t− 1) = t

so the full differential equation must be:

y′′ + y′ = t

16. Determine the longest interval for which the IVP is certain to have a unique solution
(Do not solve the IVP):

t(t− 4)y′′ + 3ty′ + 4y = 2 y(3) = 0 y′(3) = −1

SOLUTION: Write in standard form first-

y′′ +
3

t− 4
y′ +

4

t(t− 4)
y =

2

t(t− 4)

The coefficient functions are all continuous on each of three intervals:

(−∞, 0), (0, 4) and (4,∞)

Since the initial time is 3, we choose the middle interval, (0, 4).
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17. Let L(y) = ay′′ + by′ + cy for some value(s) of a, b, c.

If L(3e2t) = −9e2t and L(t2 + 3t) = 5t2 + 3t− 16, what is the particular solution to:

L(y) = −10t2 − 6t+ 32 + e2t

SOLUTION: This purpose of this question is to see if we can use the properties of
linearity to get at the answer.

We see that: L(3e2t) = −9e2t, or L(e2t) = −3e2t so:

L
(
−1

3
e2t
)

= e2t

And for the second part,

L(t2 + 3t) = 5t2 + 3t− 16 ⇒ L((−2)(t2 + 3t)) = −10t2 + 6t− 32

The particular solution is therefore:

yp(t) = −2(t2 + 3t)− 1

3
e2t

since we have shown that

L
(
−2(t2 + 3t)− 1

3
e2t
)

= −10t2 + 6t− 32 + e2t

18. Use Variation of Parameters to find a particular solution to the following, then verify
your answer using the Method of Undetermined Coefficients:

4y′′ − 4y′ + y = 16et/2

SOLUTION: For the Variation of Parameters, write in standard form first, then com-
pute y1, y2,W (y1, y2), and then use the formulas (they will be given to you):

y′′ − y′ + 1

4
y = 4et/2 ⇒ r2 − r +

1

4
= 0 ⇒ r = 1/2, 1/2

Therefore,
y1 = et/2 y2 = tet/2 W (y1, y2) = et

And,

u′1 =
−4tet

et
= −4t u′2 =

4et

et

so that u1 = −2t2 and u2 = 4t. Putting these back into our ansatz,

yp = −2t2et/2 + 4t(t2et/2) = 2t2et/2

You can verify this solution using the Method of Undetermined Coefficients.
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19. Compute the Wronskian of two solutions of the given DE without solving it:

x2y′′ + xy′ + (x2 − α2)y = 0

Using Abel’s Theorem (and writing the DE in standard form first):

y′′ +
1

x
y′ +

x2 − α2

x2
y = 0

Therefore,

W (y1, y2) = Ce−
∫

1
x
dx =

C

x

20. If y′′ − y′ − 6y = 0, with y(0) = 1 and y′(0) = α, determine the value(s) of α so that
the solution tends to zero as t→∞.

SOLUTION: Solving as usual gives:

y(t) =
(

3− α
5

)
e−2t +

(
α + 2

5

)
e3t

so to make sure the solutions tend to zero, α = −2 (to zero out the second term).

21. Give the general solution to y′′ + y = 1
sin(t)

+ t

SOLUTION: If we can use any method, I would use Method of Undetermined Coef-
ficients for g2(t) = t and Variation of Parameters for g1(t) = 1/ sin(t). Let’s do the
Variation of Parameters first:

y1 = cos(t) y2 = sin(t) W (y1, y2) = 1 g(t) =
1

sin(t)

Therefore,

u′1 = −1 u′2 =
cos(t)

sin(t)

Continuing,
u1 = −t u2 = ln(sin(t))

and
yp = −t cos(t) + ln(sin(t)) sin(t)

For the other part, we take yp = At+B, and find that yp = t, so that

y(t) = C1 cos(t) + C2 sin(t) + t− t cos(t) + ln(sin(t)) sin(t)

22. A mass of 0.5 kg stretches a spring an additional 0.05 meters past its natural length.
(i) Find the spring constant. (ii) Does a stiff spring have a large spring constant or a
small spring constant (explain).
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SOLUTION:

We use Hooke’s Law at equilibrium: mg − kL = 0, or

k =
mg

L
=

4.9

0.05
= 98

For the second part, a stiff spring will not stretch, so L will be small (and k would
therefore be large), and a spring that is not stiff will stretch a great deal (so that k
will be smaller).

23. A mass of 1
2

kg is attached to a spring with spring constant 2 (kg/sec2). The spring is
pulled down an additional 1 meter then released. Find the equation of motion if the
damping constant is c = 2 as well:

SOLUTION: Just substitute in the values

1

2
u′′ + 2u′ + 2u = 0

Pulling down the spring and releasing: u(0) = 1, u′(0) = 0 (Down is positive)

24. Write the following as R cos(ωt− δ): 2 cos(3t) + sin(3t).

SOLUTION: R =
√

22 + 12 =
√

5 and δ = tan−1(1/2). so we have
√

5 cos(3t− tan−1(1/2))

25. Find the general solution by complexification: y′′ + 3y′ + 2y = cos(t).

SOLUTION: Note that the question asks for the general solution, so we do need both
the homogeneous and particular parts of the solution. For the homogeneous part,

r2 + 3r + 2 = 0 ⇒ (r + 1)(r + 2) = 0 ⇒ yh = C1e
−t + C2e

−2t

For the particular part, cos(t) by eit and make the ansatz yp = Aeit

Aeit(−1 + 3i+ 2) = eit ⇒ A =
1

1 + 3i

You can multiply Aeit out and find the real part, or we can write the particular part
of the solution as R cos(t− δ), which is much easier.

R =
1√

12 + 32
=

1√
10

δ = tan−1(3/1)

Therefore the full general solution is given by:

y(t) = C1e
−t + C2e

−2t +
1√
10

cos(t− tan−1(3))

Alternate Solution: If you multiplied Aeit out, then took the real part, you would get:

y(t) = C1e
−t + C2e

−2t +
1

10
cos(t) +

3

10
sin(t)
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26. Find the amplitude and phase angle only for the particular solution to u′′ + u′ + 2u =
cos(t).

SOLUTION: We make yp = Aeit, complexify the right hand side of the equation, and
find the constant A first. Substituting into the differential equation, we have

Aeit(−1 + i+ 2) = eit ⇒ A =
1

1 + i

Therefore,

R =
1√

12 + 12
=

1√
2

δ = tan−1(1) =
π

4

27. Consider u′′ + u′ + u = cos(ωt). Find the value of ω that will maximize the amplitude
of the response.

SOLUTION: This is almost the same as the last problem, except yp = Aeiωt. Substi-
tuting that into our equation gives us:

Aeiωt(−ω2 + iω + 1) = eiωt ⇒ A =
1

(1− ω2) + iω

Now, the amplitude of the response function is given by

R =
1√

(1− ω2)2 + ω2

To maximize R, we differentiate it with respect to ω, and set it equal to zero. Typically,
we have to ensure that we have a max and not a min, but I’ll allow you to skip that
here. Remember our “shortcut” that said we only have to differentiate the function
under the radical sign and set that equal to zero.

R =
1√
f(ω)

⇒ R′ = − f ′(ω)

2(f(ω))3/2
= 0 ⇒ f ′(ω) = 0

Therefore,

f(ω) = (1− ω2)2 + ω2 ⇒ f ′(ω) = 2(1− ω2)(−2ω) + 2ω = 0

from which we get ω = 1/
√

2.

28. Match the solution curve to its IVP (There is one DE with no graph, and one graph
with no DE- You should not try to completely solve each DE).

(a) 5y′′ + y′ + 5y = 0, y(0) = 10, y′(0) = 0 (Complex roots, solutions go to zero)
Graph C

(b) y′′ + 5y′ + y = 0, y(0) = 10, y′(0) = 0 (Exponentials, solutions go to zero) Graph
D
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(c) y′′ + y′ + 5
4
y = 0, y(0) = 10, y′(0) = 0 NOT USED

(d) 5y′′ + 5y = 4 cos(t), y(0) = 0, y′(0) = 0 (Pure Harmonic) Graph B

(e) y′′ + 1
2
y′ + 2y = 10, y(0) = 0, y′(0) = 0 (Complex roots to homogeneous solution,

constant particular solution) Graph E

SOLUTION: If the graphs are labeled: Top row: A, B, second row: C, D, and last row
E, then the graphs are given above.
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