Overview of Complex Numbers

1 Initial Definitions

Definition 1 The complex number 2 is defined as: z = a+bi, where a, b are real numbers

and i = +/—1.
General notes about z = a + b

e Engineers typically use j instead of 7.

e Examples of complex numbers: 5+ 2i, 3—+/2i, 3, —5i

6:

e Powers of i are cyclic: i? = —1, i3 = —i, i* =1, i =4, i = —1 and so on. Notice that

the cycle is: 7, —1, —i, 1, then it repeats.

e All real numbers are also complex (by taking b = 0), so the set of real numbers is a
subset of the complex numbers.

We can split up a complex number by using the real part and the imaginary part of
the number z:

Definition: The real part of z = a+0bi is a, or in notation we write: Re(z) = Re(a+bi) = a
The imaginary part of a + bi is b, or in notation we write: Im(z) = Im(a + b)) = b

2 Visualizing Complex Numbers

To visualize a complex number, we use the complex plane C, where the horizontal (or z-)
axis is for the real part, and the vertical axis is for the imaginary part. That is, a + bz is
plotted as the point (a,b).

In Figure 1, we can see that it is also possible to represent the point a + bi, or (a,b) in
polar form, by computing its modulus (or size) r, and angle (or argument) 6 as:

r=|z| =Va®+ b 0 = arg(z)

Once we do that, we can write:
z =a+ bi =r(cos(f) + isin(h))

We have to be a bit careful defining §. For example, just adding a multiple of 27 will yield
an equivalent number for §. Typically, @ is defined to be the 4-quadrant “inverse tangent”!
that returns —7w < 6 < 7.

That is, formally we can define the argument as the following, which looks more compli-
cated than it actually is. Highly recommended: Draw the point a 4 b in the complex plane.
Then 6 is given by:

IFor example, in Maple this special angle is computed as arctan(b,a), and in Matlab the command is
atan2(b,a).
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Figure 1: Visualizing z = a + bi in the complex plane. Shown are the modulus (or length) r
and the argument (or angle) 6.

e If (a,b) is in Quadrant I or IV, # = tan~'(b/a).

If (a,b) is on the upper vertical axis (a = 0), then § = 7 /2.
f
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(a,b) is on the lower vertical axis (a = 0), then § = —7/2.
e If (a,b) is in Quadrant II or III, add 7: § = tan—'(b/a) + .

e At the origin, 0 is said to be undefined.

Examples
Find the modulus r and argument 6 for the following numbers, then express z in polar form:
o 2 =—-3:
SOLUTION: r = 3 and § = 7 so z = 3(cos(m) + isin(m))
o =20
SOLUTION: r =2 and 6 = 7/2 so z = 2(cos(w/2) + isin(w/2))
o z=—1+u
SOLUTION: 7 = v2 and 6 = tan~!(—1) + 7= -2+ 7= ¥ 50
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e 2z = —3 — 2i (Numerical approx from Calculator OK):

SOLUTION: 7 = /14 and § = tan(2/3) — m ~ 0.588 — 7 ~ —2.55 rad, or

2 = V14 (cos(—2.55) + i sin(—2.55)) = V14(cos(2.55) — isin(2.55))

Note to readers: We used the “even” symmetry of the cosine and the “odd” symmetry
of the sine to do the simplification:

cos(—x) = cos(x) and sin(—x) = —sin(z)

3 Operations on Complex Numbers

3.1 The Conjugate of a Complex Number

If 2 = a4+ bi is a complex number, then its conjugate, denoted by z is a — bi. For example,
z2=3+090=2=3—5 z2=1=>ZzZ=—1 z2=3=>2z=3

Graphically, the conjugate of a complex number is it’s mirror image across the horizontal
axis. If z has magnitude r» and argument €, then z has the same magnitude with a negative
argument.

Example
If z = 3(cos(m/2) + isin(7/2)), find the conjugate z:

z = 3(cos(—n/2) + isin(—n/2)) = 3(cos(m/2) — isin(mw/2))

3.2 Addition/Subtraction, Multiplication/Division

To add (or subtract) two complex numbers, add (or subtract) the real parts and the imagi-
nary parts separately. This is like adding polynomials (with i in place of z):

(a+bi)E£(c+di)=(a+c)E(b+d)i
To multiply, expand it as if you were multiplying polynomials, with 7 in place of z:
(a + bi)(c+ di) = ac + adi + bei + bdi® = (ac — bd) + (ad + be)i

and simplify using i> = —1. A special product is often computed- A complex number with
its conjugate:

22 = (a + bi)(a — bi) = a® — abi + abi — V> = a> +1* = |2|?



Division by complex numbers Z, is defined by translating it to real number division by

rationalizing the denominator- multiply top and bottom by the conjugate of the denominator:
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Example:

1+2  (1+2)3+5) (Q+20)(3+5) -7 11

35-5i (3-5)3+5) ¥+ 34 31

4 The Polar Form of Complex Numbers
The polar form of a complex number,
z = rcos(f) + irsin(f)

has a beautiful counterpart using the complex exponential function, e?. First, we’ll define
it using Euler’s formula (although it is possible to prove Euler’s formula).

Definition (Euler’s Formula): ¢ = cos(f) + isin(6).

We can now express the polar form of a complex number slightly differently:

z=re"  where 7 =|z] = Va2 + b2 0 = arg(z)

An important note about this expression: The rules of exponentiation still apply in the
complex case. For example,

ea+ib _ eaeib and eiGGiﬁ _ e(9+,3)i and (eie)n _ ein@
Furthermore, in the next section, we’ll look at the logarithm.

Examples

Given the complex number in a + bi form, give the polar form, and vice-versa:

1. z2=2
SOLUTION: Since r = 2 and 6 = 7/2, z = 2¢i™/?

2. 7 =2e7i/3

SOLUTION: We recall that cos(7/3) = 1/2 and sin(7/3) = v/3/2, so

z = 2(cos(—7/3) +isin(—n/3)) = 2(cos(n/3) — isin(r/3)) = 1 — V3



5 Exponentials and Logs

The logarithm of a complex number is easy to compute if the number is in polar form. We
use the normal rule of logs: In(ab) = In(a) + In(b), or in the case of polar form:

In(a + bi) = In (re”) = In(r) + In (e”) = In(r) + 0

Where we leave the last step as intuitively clear, but we don’t prove it here (we have to be
careful about the choice of # as described earlier).

The logarithm of zero is left undefined (as in the real case). However, we can now compute
things like the log of a negative number!

In(—1)=In(1-€7) =in or the log of i :  In(i) =1In(1) + =i = =i
To exponentiate a number, we convert it to multiplication (a trick we used in Calculus

when dealing with things like z%):

ab = b

Examples of Exponentiation

o 20 = ') = cos(In(2)) + isin(In(2))

o VIti=(1+i)/2= (\/ieiw/4)1/2 — (2V/4)cim/8

° ZZ — eiln(i) — ei(iW/Q) — e—7T/2

6 Real Polynomials and Complex Numbers

If ax® + bx + ¢ = 0, then the solutions come from the quadratic formula:

b= Vb? — 4dac
N 2a
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In the past, we only took real roots. Now we can use complex roots. For example, the roots
of 224+ 1=0are x =i and x = —i.
Check:

(z—i)(z+i)=a*+ai—wi—i*=2+1
Some facts about polynomials when we allow complex roots:

1. An n'" degree polynomial can always be factored into n roots. (Unlike if we only have
real roots!) This is the Fundamental Theorem of Algebra.

2. If a+0bi is a root to a real polynomial, then a—bi must also be a root. This is sometimes
referred to as “roots must come in conjugate pairs”.



Exercises

1. Suppose the roots to a cubic polynomial are a = 3, b = 1 —2¢ and ¢ = 1+ 2¢. Compute
(x —a)(z —b)(x —c).

2. Find the roots to 22 — 22 + 10. Write them in polar form.

3. Show that: e B
Re(z) = : 5 : Im(z) = S

4. For the following, let z; = —3 + 2, 20 = —4i
(a) Compute z12s, 29/2
(b) Write 2z; and z; in polar form.

5. In each problem, rewrite each of the following in the form a + b::

a 1+24
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6. For fun, compute the logarithm of each number:
(a) In(=3)
(b) In(—1+414)
(c) In(2e)



