L005 Section 6.2 Solving DEs with Laplace Transforms

- From the previous video,

$$
\begin{gathered}
\mathcal{L}\left(y^{\prime}(t)\right)=s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}(t)\right)=s^{2} Y(s)-s y(0)-y^{\prime}(0)
\end{gathered}
$$

Similarly, we could write:

$$
\mathcal{L}\left(y^{\prime \prime \prime}(t)\right)=s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0)
$$

And so on. These are special cases of Table Entry 18 (from the table in the book).

- Use Laplace transforms to solve the following IVP:

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0, \quad y(0)=2, y^{\prime}(0)=-1
$$

SOLUTION:

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime \prime}\right)+2 \mathcal{L}\left(y^{\prime}\right)+5 \mathcal{L}(y) & =0 \\
\left(s^{2} Y-2 s+1\right)+2(s Y-2)+5 Y=0 \quad & \Rightarrow \quad Y=\frac{2 s+3}{s^{2}+2 s+5}
\end{aligned}
$$

To solve the ODE, we invert the transform (complete the square in the denominator):

$$
Y=\frac{2 s+3}{\left(s^{2}+2 s+1\right)+4}
$$

This expression may seem familiar; we inverted it in the last video:

$$
\frac{2(s+1)+1}{(s+1)^{2}+2^{2}}=2 \frac{s+1}{(s+1)^{2}+2^{2}}+\frac{1}{2} \frac{2}{(s+1)^{2}+2^{2}}
$$

Now we can do the inversion:

$$
y(t)=2 \mathrm{e}^{-t} \cos (2 t)+\frac{1}{2} \mathrm{e}^{-t} \sin (2 t)
$$

And we also might note that this is the homogeneous solution to the differential equation (as expected).

The technique of solving a differential equation via a Laplace transform can be visualized using the diagram below.

