L006 Section 6.2 Examples

- Sectionb 6.2, \#22: Solve

$$
y^{\prime \prime}-2 y^{\prime}+2 y=\mathrm{e}^{-t} \quad y(0)=0 \quad y^{\prime}(0)=1
$$

SOLUTION: Take the Laplace transform of both sides and simplify, solving for Y (then invert):
$\left(s^{2} Y-s \cdot 0-1\right)-2(s Y-0)+2 Y=\frac{1}{s+1} \quad \Rightarrow \quad\left(s^{2}-2 s+2\right) Y=\frac{1}{s+1}+1$
Note the appearance of the characteristic equation. Doing something slightly different than the video, I'll simplify the two expressions and perform the full partial fractions:

$$
\begin{gathered}
Y=\frac{1}{(s+1)\left(s^{2}-2 s+2\right)}+\frac{1}{s^{2}-2 s+2}=\frac{s+2}{(s+1)\left(s^{2}-2 s+2\right)} \\
\frac{s+2}{(s+1)\left(s^{2}-2 s+2\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}-2 s+2}
\end{gathered}
$$

Continuing,
$s-2=A\left(s^{2}-2 s+2\right)+(B s+C) s=(A+B) s^{2}+(-2 A+C) s+2 A$
Therefore,

$$
\begin{array}{lrl}
s^{2}: & 0 & =A+B \\
s: & 1 & =-2 A+C \quad \Rightarrow \quad A=-1, B=1, C=-1 \\
\text { const }: & -2 & =2 A
\end{array}
$$

Now we have:
$Y(s)=\frac{s+2}{(s+1)\left(s^{2}-2 s+2\right)}=-\frac{1}{s+1}+\frac{s-1}{s^{2}-2 s+2}=-\frac{s+1}{+} \frac{s-1}{(s-1)^{2}+1}$
The solution to the IVP is given by the inverse Laplace transform:

$$
y(t)=-\mathrm{e}^{-t}+\mathrm{e}^{t} \cos (t)
$$

