
Sections 3.8

Last time, we focused our attention on the spring-mass model that had no forcing. Today,
we look at the special case of periodic forcing.

No Damping, Periodic Forcing

Rather than write the model as mu′′ + ku = F (t), it is common practice to write the model
as u′′+ω2

0u = F (t). That way it is easy to read off the circular frequency of the homogenous
part of the solution. Putting in the periodic forcing (we’ll use cosine)

u′′ + ω2
0u = F0 cos(ωt)

And, as long as the forcing function does not have the same frequency as the natural
frequency, ω0 6= ω, then we can solve for the particular solution using complexification:
yp = Aeiωt:

Aeiωt(−ω2 + ω2
0) = F0e

iωt ⇒ A =
F0

ω2
0 − ω2

so the overall solution is:

y(t) = C1 cos(ω0t) + C2 sin(ω0t) +
F0

w2
0 − w2

cos(wt)

It can be shown (Exercise 1) that, if y(0) = y′(0) = 0, then

C1 = − F0

ω2
0 − ω2

C2 = 0

In this case,

y(t) =
F0

w2
0 − w2

(cos(wt)− cos(w0t))

In the handout on the next page, we see what happens to this function. We see a series
of graphs where w0 = 1 and w is changing, from w = 2 to w = 1.01. The values were
w = 2, 1.5, 1.1, 1.01

This shows the phenomena known as beating. Beating occurs (formally) when there is
no damping, and when the frequency for the driving force is very close to (but not equal to)
the natural frequency.

Using some trig identities, it is possible to rewrite y(t) as the following (p. 213 of the
text):

2F0

ω2
0 − ω2

sin

(
(ω0 − ω)t

2

)
sin

(
(ω0 + ω)t

2

)
As ω → ω0, the period of the first sine gets larger and larger. In fact, we see the large, slower
oscillating function in the images below- They represent

± 2F0

ω2
0 − ω2

sin

(
(ω0 − ω)t

2

)
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From the images, we see that ONE SINGLE BEAT has CIRCULAR FREQUENCY that is
half of the sine wave, or |ω0 − ω|.

From Beating to Resonance

Figure 1: Figure showing the function 10
1−ω2 (cos(t)− cos(ωt)). The graphs show the result

of taking ω = 2, ω = 1.5, ω = 1.1 and ω = 1.01. As w → 1, we see that the amplitude and
period of the beats are getting larger and larger and larger!

As a particular example, consider the upper right figure. This comes from taking ω0 = 1
and ω = 1.5. In that case, the circular frequency is 1/2, which makes the period of one beat:
2π/(1/2) = 4π ≈ 12.5 (examine the figure to double check).
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Resonance

What happens at ω = ω0? Something known as resonance.

• Geometrically, we see that the period of the larger beat is infinitely long, with an
infinitely large amplitude (draw graph).

• Algebraically (from Method of Undetermined Coefficients), we see that the new guess
for the particular solution:

u′′ + w2
0u = F0 cos(w0t)

is yp(t) = tAeiω0t. We could substitute this in and solve, or we can take the limit of
our solution.

• Using our previous solution, we take the limit using L’Hospital’s rule:

lim
w→w0

F0 (cos(wt)− cos(w0t))

w2
0 − w2

= lim
ω→ω0

−F0t sin(ωt)

−2ω
=

F0

2ω0

t sin(ω0t)
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Bringing in Damping: The Full Model

When we have the full damped system, then all solutions will tend to zero as t→∞. How
do we know that? Given

mu′′ + γu′ + ku = F0 cos(ωt)

We will never have purely periodic solutions for yh, therefore, yp will never have the mul-
tiplication by t (by undetermined coefficients). HOWEVER, we will still analyze a slightly
changed version of the system:

u′′ + pu′ + qu = cos(ωt)

Now, we’ll feel free to make yp = Aeiωt, and substitute getting:

Aeiωt(−ω2 + iωp+ q) = eiωt

And we see that:

A =
1

(q − ω2) + iωp

Since the forcing function is a cosine function, from our handout, we had that the amplitude
R and phase angle δ for yp are given by:

R =
1

|(q − ω2) + iwp|
δ = tan−1

(
ωp

q − ω2

)
Computing these, we can say that the forcing function then has the form

yp = R cos(ωt− δ)

Now, suppose that we can “tune” the value of ω, so that we’ll fix the other model parameters
p, q. In that case, R becomes a function of ω:

R =
1√

(q − ω2)2 + p2ω2

And we can ask: Is there a value of ω that maximizes the amplitude of the forced response,
R? To find the max in this case, we’ll differentiate R, then set the derivative to zero. Before
we do that, notice the following:

R =
1√
f(ω)

= (f(ω))−1/2 ⇒ dR

dω
= −1

2
(f(ω))−3/2f ′(ω) = −1

2

f ′(ω)

(f(ω))3/2

If we set dR
dω

= 0, we just have f ′(ω) = 0- So that simplifies our computation by quite a bit.

f(ω) = (q − ω2)2 + p2ω2 ⇒ df

dω
= 2(q − ω2)(−2ω) + p2 · 2ω = 0

Solving for only the positive ω, we get ω =
√

2q−p2
2

. It is at this maximizer that we’ll extend
the idea of resonance to cover... Here, the amplitude of the response can be VERY LARGE,
even though damping is present.
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Homework
Replaces Section 3.8

1. Solve the IVP u′′ + ω2
0u = F0 cos(ωt), u(0) = 0 and u′(0) = 0, if ω 6= ω0.

2. Show that the period of motion of an undamped vibration of a mass hanging from a

vertical spring is 2π
√
L/g.

NOTE: We defined L to be the length of the spring stretched from its natural length
to equilibrium.

3. Convert the following to R cos(ω0t− δ).

(a) cos(9t)− sin(9t)

(b) 2 cos(3t) + sin(3t)

(c) −2π cos(πt)− π sin(πt)

(d) 5 sin(t/2)− cos(t/2)

4. Suppose u′′ + 4u = cos(2.8t). This function exhibits beating. (i) Give the frequence
and amplitude of a beat, and (ii) Give (only) the particular part of the solution. HINT:
Did you notice the relationship between the constant in front of the particular solution
and the constant in front of the product of sines on page 1?

5. Same question as before, but with u′′ + 9u = cos(3.1t).

6. Same question as before, but with u′′ + u = cos(1.3 t)

7. Find the solution to u′′ + 9u = cos(3t) with zero initial conditions.

8. Find the general solution using complex exponentials: y′′ + 3y′ + 2y = cos(t).

9. Consider u′′ + pu′ + qu = cos(ωt). In the notes at the bottom of p. 4, we got that

ω =

√
2q − p2

2

Thinking of p as damping, if the damping is very very small, then approximately what
value of ω will result in a very large amplitude response?

10. Consider u′′ + u′ + 2u = cos(t). Find the amplitude and the phase angle of the
particular part of the solution (or, for the forced response). You do NOT need to get
the homogeneous part of the solution.

11. Consider u′′+u′+ 2u = cos(ωt). Find the value of ω that will maximize the amplitude
of the response.

NOTE: I don’t want you to memorize the value of ω. Rather, find the amplitude R,
then differentiate to find where the derivative is zero. Remember our shortcut (dealing
with f(ω)).
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12. Pictured below are the graphs of several solutions to the differential equation:

y′′ + py′ + qy = cos(ωt)

Match the figure to the choice of parameters.

Choice b c ω
(A) 5 3 1
(B) 0 2 1
(C) 0 1 1
(D) 2 1 3

13. Write the forced response to the ODE below as R cos(ωt− δ):

u′′ + u′ + 2u = cos(3t)

14. Suppose we can tune the value of q rather than the value of ω in the differential equation
(where ω = 3):

u′′ + u′ + qu = cos(3t)

Find the value of q that will maximize the amplitude of the forced response.
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