Given $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$ and $y_{1}, y_{2}$ as $y_{h}$.Ansatz:

$$
y_{p}=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)
$$

We will see that $u_{1}, u_{2}$ satisfy

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(t) \\
& u_{1}^{\prime}=\frac{\left|\begin{array}{rr}
0 & y_{2} \\
g(t) & y_{2}^{\prime}
\end{array}\right|}{W\left(y_{1}, y_{2}\right)} \quad u_{2}^{\prime}=\frac{\left|\begin{array}{lr}
y_{1} & 0 \\
y_{1}^{\prime} & g(t)
\end{array}\right|}{W\left(y_{1}, y_{2}\right)}
\end{aligned}
$$

## Proof of Variation of Parameters

The steps for the algorithm:

- Step 1: Differentiate $y_{p}$ to get $y_{p}^{\prime}$.
- Step 2: Assume that $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$.
- Step 3: Differentiate $y_{p}$ again to get $y_{p}^{\prime \prime}$
- Step 4: Substitute $y_{p}$ into the DE to see if we can solve for $u_{1}, u_{2}$.


## Steps 1 and 2: Differentiate, get one constraint

$$
y_{p}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}
$$

Constraint 1: $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0$. That leaves us:

$$
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}
$$

Differentiate again:

$$
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime \prime}
$$

And substitute into the DE.

## Step 4: Substitution and Constraint 2

\[

\]

where $u_{1}\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+q y_{1}\right)=0$ and $u_{2}\left(y_{2}^{\prime \prime}+p y_{2}^{\prime}+q y_{2}\right)=0$ Therefore, $u_{1}, u_{2}$ satisfy

$$
\begin{aligned}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2} & =0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime} & =g(t)
\end{aligned}
$$

## Conclusion

Variation of Parameters is a method to obtain the particular part of the solution, $y_{p}$, to a second order linear differential equation,

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

where we first find $y_{h}=C_{1} y_{1}+C_{2} y_{2}$, then take as our ansatz:

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

Then, $u_{1}, u_{2}$ satisfy the following equations, which can be solved by Cramer's Rule.

$$
\begin{aligned}
u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2} & =0 \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime} & =g(t)
\end{aligned}
$$

## Example 1

Find $y_{p}$ if $4 y^{\prime \prime}-4 y^{\prime}-8 y=8 \mathrm{e}^{-t}$.

- Standard form to get the right $g(t) . y^{\prime \prime}-y^{\prime}-2 y=2 \mathrm{e}^{-t}$.
- $y_{1}=\mathrm{e}^{2 t}, y_{2}=\mathrm{e}^{-t}$ and $g(t)=2 \mathrm{e}^{-t}$
- Solve the system- First, the denominators are $W\left(y_{1}, y_{2}\right)$.

$$
W=\left|\begin{array}{rr}
\mathrm{e}^{2 t} & \mathrm{e}^{-t} \\
2 \mathrm{e}^{2 t} & -\mathrm{e}^{-t}
\end{array}\right|=-3 \mathrm{e}^{t}
$$

## Example 1, continued

$$
\begin{gathered}
u_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & \mathrm{e}^{-t} \\
2 \mathrm{e}^{-t} & -\mathrm{e}^{-t}
\end{array}\right|}{-3 \mathrm{e}^{t}}=\frac{-2 \mathrm{e}^{-2 t}}{-3 \mathrm{e}^{t}}=\frac{2}{3} \mathrm{e}^{-3 t} \Rightarrow u_{1}(t)=-\frac{2}{9} \mathrm{e}^{-3 t} \\
u_{2}^{\prime}=\frac{\left|\begin{array}{cc}
\mathrm{e}^{2 t} & 0 \\
2 \mathrm{e}^{2 t} & 2 \mathrm{e}^{-t}
\end{array}\right|}{-3 \mathrm{e}^{t}}=\frac{2 \mathrm{e}^{t}}{-3 \mathrm{e}^{t}}=-\frac{2}{3} \Rightarrow u_{2}(t)=-\frac{2}{3} t \\
y_{p}=u_{1} y_{1}+u_{2} y_{2}=-\frac{2}{9} \mathrm{e}^{-3 t} \mathrm{e}^{2 t}-\frac{2}{3} t \mathrm{e}^{-t}=-\frac{2}{9} \mathrm{e}^{-t}-\frac{2}{3} t \mathrm{e}^{-t}
\end{gathered}
$$

We can take

$$
y_{p}=-\frac{2}{3} t \mathrm{e}^{-t}
$$

Do I need to take the constant when integrating $u_{1}, u_{2}$ ? If we do, then we would have:

$$
u_{1}(t)+C_{1}, \quad u_{2}(t)+C_{2}
$$

so that

$$
y_{p}=\left(u_{1}(t)+C_{1}\right) y_{1}+\left(u_{2}(t)+C_{2}\right) y_{2}=u_{1} y_{1}+u_{2} y_{2}+\left(C_{1} y_{1}+C_{2} y_{2}\right)
$$

Answer:
No, since we'll just be attaching part of the homogeneous solution.

## Example 2

Use any method to find the general solution:

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{\mathrm{e}^{t}}{1+t^{2}}+3 \mathrm{e}^{t}
$$

SOLUTION: Break into three parts.

- $y^{\prime \prime}-2 y^{\prime}+y=0$ which is $y(t)=\mathrm{e}^{t}\left(C_{1}+C_{2} t\right)$
- $y^{\prime \prime}-2 y^{\prime}+y=3 \mathrm{e}^{t}$ by Method of Undet Coeffs
- $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{1+t^{2}}$ by Var of Params.

We'll focus on the last one.

## Computations

For Variation of Parameters, we take

$$
y_{1}=\mathrm{e}^{t} \quad y_{2}=t \mathrm{e}^{t} \quad g(t)=\frac{\mathrm{e}^{t}}{1+t^{2}}
$$

We'll need $W\left(y_{1}, y_{2}\right)$ :

$$
W\left(y_{1}, y_{2}\right)=\left|\begin{array}{rr}
\mathrm{e}^{t} & t \mathrm{e}^{t} \\
\mathrm{e}^{t} & (1+t) \mathrm{e}^{t}
\end{array}\right|=(1+t) \mathrm{e}^{2 t}-t \mathrm{e}^{2 t}=\mathrm{e}^{2 t}
$$

## Solve for $u_{1}(t), u_{2}(t)$

$$
\begin{gathered}
u_{1}^{\prime}=\frac{-y_{2} g(t)}{W\left(y_{1}, y_{2}\right)}=\frac{-t \mathrm{e}^{t} \frac{\mathrm{e}^{t}}{\left(1+t^{2}\right)}}{\mathrm{e}^{2 t}}=\frac{-t}{1+t^{2}} \quad \Rightarrow \quad u_{1}=-\frac{1}{2} \ln \left(1+t^{2}\right) \\
u_{2}^{\prime}=\frac{y_{1} g(t)}{W\left(y_{1}, y_{2}\right)}=\frac{\mathrm{e}^{t} \frac{\mathrm{e}^{t}}{\left(1+t^{2}\right)}}{\mathrm{e}^{2 t}}=\frac{1}{1+t^{2}} \quad \Rightarrow \quad u_{2}=\tan ^{-1}(t)
\end{gathered}
$$

The particular solution for $g_{2}(t)=\frac{\mathrm{e}^{t}}{1+t^{2}}$ is given by:

$$
y_{p}(t)=-\frac{1}{2} e^{t} \ln \left(1+t^{2}\right)+t e^{t} \tan ^{-1}(t)
$$

## Full solution

The full solution to:

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{\mathrm{e}^{t}}{1+t^{2}}+3 \mathrm{e}^{t}
$$

is

$$
y(t)=\mathrm{e}^{t}\left(C_{1}+C_{2} t+\frac{3}{2} t^{2}\right)-\frac{1}{2} \mathrm{e}^{t} \ln \left(1+t^{2}\right)+t \mathrm{e}^{t} \tan ^{-1}(t)
$$

Use the Variation of Parameters to solve

$$
t^{2} y^{\prime \prime}-t(t+2) y^{\prime}+(t+2) y=2 t^{3}
$$

Where we're given:

$$
y_{1}(t)=t \quad y_{2}(t)=t \mathrm{e}^{t}
$$

## SOLUTION

Put in standard form first!

$$
y^{\prime \prime}-\frac{t+2}{t} y^{\prime}+\frac{t+2}{t^{2}} y=2 t
$$

Therefore,

$$
g(t)=2 t \quad W\left(y_{1}, y_{2}\right)=t^{2} \mathrm{e}^{t}
$$

And solve:

$$
u_{1}^{\prime}=\frac{-2 t^{2} \mathrm{e}^{t}}{t^{2} \mathrm{e}^{t}}=-2 \quad \Rightarrow \quad u_{1}=-2 t
$$

Similarly,

$$
u_{2}^{\prime}=\frac{2 t^{2}}{t^{2} \mathrm{e}^{t}}=2 \mathrm{e}^{-t} \quad \Rightarrow \quad u_{2}=-2 \mathrm{e}^{-t}
$$

so

$$
y_{p}=(-2 t)(t)+\left(-2 \mathrm{e}^{-t}\right)\left(t \mathrm{e}^{t}\right)=-2 t^{2}-2 t \quad \Rightarrow y_{p}(t)=-2 t^{2}
$$

## Summary of Techniques - Chapter 3

(1) One method to find $y_{h}$ given $a y^{\prime \prime}+b y^{\prime}+c y=0$.
(2) Two methods to find $y_{2}$ to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.
(Must have $y_{1}$ already)

- Reduction of Order: Assume $y_{2}=v(t) y_{1}(t)$.
- Wronskian: Compute the Wronskian two waysAbel's Theorem and the def.
(3) Two methods to find $y_{p}(t)$ for $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.
- Method of Undetermined Coefficients ( $g(t)$ has to be of a certain type).
- Variation of Parameters

