Last time:

- Vocab: ODE, PDE, IVP

Last time:

- Vocab: ODE, PDE, IVP
- Skills: Be able to verify that $\phi(t)$ is a solution to a DE.

Last time:

- Vocab: ODE, PDE, IVP
- Skills: Be able to verify that $\phi(t)$ is a solution to a DE.
- Solution to $y^{\prime}=a y$ is $y(t)=C \mathrm{e}^{a t}$

Today: Finish up visualizations in Chapter 1, look at an algorithm in 2.1. First, let's get a solution to $y^{\prime}=a y+b$. Notice that this DE could be expressed as:

$$
\left(y+\frac{b}{a}\right)^{\prime}=a\left(y+\frac{b}{a}\right)
$$

which is the normal exponential growth model. That is, if $Y=y+b / a$, then the DE is

$$
Y^{\prime}=a Y \quad \Rightarrow \quad Y=C e^{a t}
$$

or

$$
y+\frac{b}{a}=C \mathrm{e}^{a t} \Rightarrow y=C \mathrm{e}^{a t}-\frac{b}{a}
$$

where C depends on the initial conditions...

Example:

Solve $y^{\prime}=-2 y+5$

Example:

Solve $y^{\prime}=-2 y+5$
SOLUTION:

$$
y(t)=C \mathrm{e}^{-2 t}+\frac{5}{2}
$$

We note that for any C, the solution will converge to $5 / 2$ as t gets large.

Vocab from the reading:

- Order of a DE

Vocab from the reading:

- Order of a DE (order of highest derivative)

Vocab from the reading:

- Order of a DE (order of highest derivative) Example: Order of $y^{\prime}+y^{3}=t^{2}+4 t+5$ is:

Vocab from the reading:

- Order of a DE (order of highest derivative) Example: Order of $y^{\prime}+y^{3}=t^{2}+4 t+5$ is: 1

Vocab from the reading:

- Order of a DE (order of highest derivative) Example: Order of $y^{\prime}+y^{3}=t^{2}+4 t+5$ is: 1
- Linear DE

Vocab from the reading:

- Order of a DE (order of highest derivative) Example: Order of $y^{\prime}+y^{3}=t^{2}+4 t+5$ is: 1
- Linear DE (linear in $y, y^{\prime}, y^{\prime \prime}$, etc)

Vocab from the reading:

- Order of a DE (order of highest derivative) Example: Order of $y^{\prime}+y^{3}=t^{2}+4 t+5$ is: 1
- Linear DE (linear in $y, y^{\prime}, y^{\prime \prime}$, etc) Example: $y^{\prime}+y^{3}=t^{2}+4 t$ is

Vocab from the reading:

- Order of a DE (order of highest derivative) Example: Order of $y^{\prime}+y^{3}=t^{2}+4 t+5$ is: 1
- Linear DE (linear in $y, y^{\prime}, y^{\prime \prime}$, etc) Example: $y^{\prime}+y^{3}=t^{2}+4 t$ is nonlinear $\left(y^{3}\right)$ Example: $y^{\prime \prime}+3 y^{\prime}+5 y=4 t^{2}$ is

Vocab from the reading:

- Order of a DE (order of highest derivative) Example: Order of $y^{\prime}+y^{3}=t^{2}+4 t+5$ is: 1
- Linear DE (linear in $y, y^{\prime}, y^{\prime \prime}$, etc) Example: $y^{\prime}+y^{3}=t^{2}+4 t$ is nonlinear $\left(y^{3}\right)$ Example: $y^{\prime \prime}+3 y^{\prime}+5 y=4 t^{2}$ is linear (in y, y^{\prime}, etc). (More on this later)

Questions that we try to answer for DEs:

- Existence: Does every ODE $y^{\prime}=f(t, y)$ have a solution $y=\phi(t)$?

Questions that we try to answer for DEs:

- Existence: Does every ODE $y^{\prime}=f(t, y)$ have a solution $y=\phi(t)$? (No).
- A second question is one of uniqueness: If the ODE has a solution, does it have more than one?

Questions that we try to answer for DEs:

- Existence: Does every ODE $y^{\prime}=f(t, y)$ have a solution $y=\phi(t)$? (No).
- A second question is one of uniqueness: If the ODE has a solution, does it have more than one?
- Third is a practical question: If the ODE has a solution, can we compute it?

Questions that we try to answer for DEs:

- Existence: Does every ODE $y^{\prime}=f(t, y)$ have a solution $y=\phi(t)$? (No).
- A second question is one of uniqueness: If the ODE has a solution, does it have more than one?
- Third is a practical question: If the ODE has a solution, can we compute it?

TODAY: Visualizing solutions, solving a linear equation.

Visualizing solutions to DE

Visualizing solutions to DE

$$
y^{\prime}=a y+b \quad y(t)=P_{0} \mathrm{e}^{a t}-\frac{b}{a}
$$

Cases:

- If $P_{0}=0$, then $y(t)$ is constant $(y=-b / a)$.

Definition: An equilibrium solution is a constant solution $y=k$ so that $y^{\prime}=0$.

- Otherwise:

If $a>0$, then the solutions will all "blow up" $(|y(t)| \rightarrow \infty)$ except one solution.

- If $a<0$, then all solutions tend toward equilibrium.

Visualizing Solutions

A differential equation is like a "road map":

$$
y^{\prime}=f(t, y)
$$

That is, at each point (t, y), we can compute the slope of the line tangent to the solution curve $y(t)$.

Visualizing Solutions

A differential equation is like a "road map":

$$
y^{\prime}=f(t, y)
$$

That is, at each point (t, y), we can compute the slope of the line tangent to the solution curve $y(t)$.
If the function y is well behaved, the tangent line should be a good approximation to y.

Visualizing Solutions

A differential equation is like a "road map":

$$
y^{\prime}=f(t, y)
$$

That is, at each point (t, y), we can compute the slope of the line tangent to the solution curve $y(t)$.
If the function y is well behaved, the tangent line should be a good approximation to y.

Definition: A direction field is a plot in the (t, y) plane that give the local tangent lines to the solution to a first order ODE.

Example: $y^{\prime}=t-y^{2}$

Visualizing Solutions

A differential equation is like a "road map":

$$
y^{\prime}=f(t, y)
$$

That is, at each point (t, y), we can compute the slope of the line tangent to the solution curve $y(t)$.
If the function y is well behaved, the tangent line should be a good approximation to y.

Definition: A direction field is a plot in the (t, y) plane that give the local tangent lines to the solution to a first order ODE.

Example: $y^{\prime}=t-y^{2}$
In drawing a picture, we might consider curves of constant slope. For example, with zero slope:

$$
0=t-y^{2} \quad \Rightarrow \quad y^{2}=t
$$

Figure: Direction Field with Isoclines: $y^{\prime}=-2, y^{\prime}=0, y^{\prime}=1$

Give an ODE of the form $y^{\prime}=a y+b$ whose direction field looks like:

Same question as before:

Choose a DE

(1) $y^{\prime}=3-y$
(2) $y^{\prime}=y(y+3)$

0 $y^{\prime}=y(3-y)$
($y^{\prime}=2 y-1$

Homework Hint: \#22, Section 1.1

$$
V=\frac{4}{3} \pi r^{3} \quad A=4 \pi r^{2}
$$

so if $V^{\prime}=k A$, give V^{\prime} in terms of V only.

Homework Hint: \#14, Section 1.3
Differentiate the following with respect to t :

$$
f(t) \int_{0}^{t} G(s) d s
$$

SOLUTION: Use the product rule and the FTC:

$$
f^{\prime}(t) \int_{0}^{t} G(s) d s+f(t) G(t)
$$

Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

$$
\frac{d y}{d t}+a(t) y(t)=f(t) \quad \text { or } \quad y^{\prime}+a(t) y=f(t)
$$

Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

$$
\frac{d y}{d t}+a(t) y(t)=f(t) \quad \text { or } \quad y^{\prime}+a(t) y=f(t)
$$

OBSERVATION: By the product rule and chain rule,

$$
\left(y \mathrm{e}^{P(t)}\right)^{\prime}=
$$

Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

$$
\frac{d y}{d t}+a(t) y(t)=f(t) \quad \text { or } \quad y^{\prime}+a(t) y=f(t)
$$

OBSERVATION: By the product rule and chain rule,

$$
\left(y \mathrm{e}^{P(t)}\right)^{\prime}=y^{\prime} \mathrm{e}^{P(t)}+P^{\prime}(t) y \mathrm{e}^{P(t)}=
$$

Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

$$
\frac{d y}{d t}+a(t) y(t)=f(t) \quad \text { or } \quad y^{\prime}+a(t) y=f(t)
$$

OBSERVATION: By the product rule and chain rule,

$$
\left(y \mathrm{e}^{P(t)}\right)^{\prime}=y^{\prime} \mathrm{e}^{P(t)}+P^{\prime}(t) y \mathrm{e}^{P(t)}=\mathrm{e}^{P(t)}\left(y^{\prime}+P^{\prime}(t) y\right)
$$

Section 2.1: Linear DEs

Definition: Linear first order ODE is any DE that can be expressed as:

$$
\frac{d y}{d t}+a(t) y(t)=f(t) \quad \text { or } \quad y^{\prime}+a(t) y=f(t)
$$

OBSERVATION: By the product rule and chain rule,

$$
\left(y \mathrm{e}^{P(t)}\right)^{\prime}=y^{\prime} \mathrm{e}^{P(t)}+P^{\prime}(t) y \mathrm{e}^{P(t)}=\mathrm{e}^{P(t)}\left(y^{\prime}+P^{\prime}(t) y\right)
$$

Question: Is there a function $\mathrm{e}^{P(t)}$ that will turn the left side of the DE to the derivative of something?

Solve Linear DEs using Integrating Factor

Given $y^{\prime}+a(t) y=f(t)$, we compute the integrating factor

$$
\mathrm{e}^{\int a(t) d t}
$$

and multiply the DE by it:

$$
\mathrm{e}^{\int a(t) d t}\left(y^{\prime}+a(t) y\right)=f(t) \mathrm{e}^{\int a(t) d t}
$$

This makes the left side a single derivative:

$$
\left(y(t) \mathrm{e}^{\int a(t) d t}\right)^{\prime}=f(t) \mathrm{e}^{\int a(t) d t}
$$

which can be solved by integrating both sides.

$$
y(t) \mathrm{e}^{\int a(t) d t}=\int f(t) \mathrm{e}^{\int a(t) d t} d t
$$

Example 1

$$
y^{\prime}+\frac{1}{t} y=\mathrm{e}^{-2 t}
$$

The integrating factor is

Example 1

$$
y^{\prime}+\frac{1}{t} y=\mathrm{e}^{-2 t}
$$

The integrating factor is

$$
\mathrm{e}^{\int \frac{1}{t} d t}=\mathrm{e}^{\ln (t)}=t
$$

so that

Example 1

$$
y^{\prime}+\frac{1}{t} y=\mathrm{e}^{-2 t}
$$

The integrating factor is

$$
\mathrm{e}^{\int \frac{1}{t} d t}=\mathrm{e}^{\ln (t)}=t
$$

so that

$$
t\left(y^{\prime}+3 y\right)=t \mathrm{e}^{-2 t}
$$

and

Example 1

$$
y^{\prime}+\frac{1}{t} y=\mathrm{e}^{-2 t}
$$

The integrating factor is

$$
\mathrm{e}^{\int \frac{1}{t} d t}=\mathrm{e}^{\ln (t)}=t
$$

so that

$$
t\left(y^{\prime}+3 y\right)=t \mathrm{e}^{-2 t}
$$

and

$$
(t y)^{\prime}=t \mathrm{e}^{-2 t} \quad \Rightarrow \quad t y=-\frac{1}{2} t \mathrm{e}^{-2 t}-\frac{1}{4} \mathrm{e}^{-2 t}+C
$$

(Remember to include the constant of integration!)

Example 1

$$
y^{\prime}+\frac{1}{t} y=\mathrm{e}^{-2 t}
$$

The integrating factor is

$$
\mathrm{e}^{\int \frac{1}{t} d t}=\mathrm{e}^{\ln (t)}=t
$$

so that

$$
t\left(y^{\prime}+3 y\right)=t \mathrm{e}^{-2 t}
$$

and

$$
(t y)^{\prime}=t \mathrm{e}^{-2 t} \quad \Rightarrow \quad t y=-\frac{1}{2} t \mathrm{e}^{-2 t}-\frac{1}{4} \mathrm{e}^{-2 t}+C
$$

(Remember to include the constant of integration!)
The general solution:

$$
y=-\frac{1}{2} \mathrm{e}^{-2 t}-\frac{1}{4 t} \mathrm{e}^{-2 t}+\frac{C}{t}
$$

