
Solutions to the Homework
Replaces Section 3.8

1. Solve the IVP u′′ + ω2
0u = F0 cos(ωt), u(0) = 0 and u′(0) = 0, if ω 6= ω0.

SOLUTION: Rewriting the DE to complexify the right hand side,

u′′ + ω2
0u = F0(cos(ω)t+ i sin(ωt)

we’ll solve the full problem, then (because the original function was cosine) take the real
part.

yp = Aeiωt y′′p = −ω2e−iωt ⇒ Aeiωt(−ω2 + ω2
0) = F0e

iωt

Therefore, A = F0/(ω
2
0 − ω2), and we want the real part of Aeiωt:

yp =
F0

ω2
0 − ω2

() cos(ωt) + i sin(ωt))

The real part is our final answer. Including the homogenous part,

u(t) = C1 cos(ω0t) + C2 sin(ω0t) +
F0

ω2
0 − ω2

cos(ωt)

Putting in the initial conditions,

u(t) =
F0

ω2
0 − ω2

(cos(ωt)− cos(ω0 t)

2. Show that the period of motion of an undamped vibration of a mass hanging from a

vertical spring is 2π
√
L/g

SOLUTION: With no damping, mu′′ + ku = 0 has solution

u(t) = A cos

√ k

m
t

+B sin

√ k

m
t


so the period is given below. We also note that mg − kL = 0, and this equation yields
the desired substitution:

P =
2π√

k
m

= 2π

√
m

k
and mg = kL ⇒ k

m
=
g

L

3. Convert the following to R cos(ωt− δ)

(a) cos(9t)− sin(9t)

In this case, R =
√

2 and δ = tan−1(−1) = −π/4
Note that in this case, we don’t need to add π because (1,−1) is in Quadrant IV.

(b) 2 cos(3t) + sin(3t)

SOLUTION: R =
√

5 and ω = 3. The angle δ is computed as the argument of the
point (2, 1), which you can leave as δ = tan−1(1/2):

2 cos(3t) + sin(3t) =
√

5 cos(3t− tan−1(1/2))
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(c) −2π cos(πt)− π sin(πt)

SOLUTION: Same idea, but note that (−2π,−π) is a point in Quadrant III, so we
add (or subtract) π:

R = π
√

5 and δ = tan−1(1/2) + π and ω = π

(d) 5 sin(t/2)− cos(t/2)

SOLUTION: Did you notice I reversed the sine and cosine on you (that was a
mistake, but maybe it was a helpful one). The value of R and omega would be the
same either way, but δ changes:

R =
√

26 ω =
1

2

For δ, notice that our “point” is (−1, 5) which is in Quadrant II, so add π:

√
26 cos

(
t

2
− tan−1(−5)− π

)

4. (Assigned as a quiz)

5. u′′ + 9u = cos(3.1 t)

For this, the (circular) beat frequency is |ω0− ω| = 1/10 and the amplitude of a beat is
2/(ω2

0 − ω2), or approximately 3.28. The particular part of the solution is

1

ω2
0 − ω2

cos(ωt) = 1.64 cos(3.1t)

Not necessary, but we can check the figure below provided by Maple:

6. u′′ + u = cos(1.3 t)

For this, the (circular) beat frequency is 3/10 and the amplitude of a beat is 2/(ω2
0−ω2),

or approximately 2.9. The particular part of the solution is

1

ω2
0 − ω2

cos(ωt) = 1.45 cos(1.3t)
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7. Solve u′′ + 9u = cos(3t) with zero ICs.

The solution is:

u(t) =
1

6
t sin(3t)

8. Find the general solution of the given differential equation:

y′′ + 3y′ + 2y = cos(t)

First, get the homogeneous part of the solution by solving the characteristic equation:

r2 + 3r + 2 = 0 ⇒ (r + 2)(r + 1) = 0 ⇒ r = −1,−2

Therefore, yh(t) = C1e
−t + C2e

−2t. Now use yp = Aeit, and substitute:

Aeit(−1 + 3i+ 2) = eit ⇒ A =
1

1 + 3i

We want the real part of Aeit. The full expansion is given below- Just pick out the real
part for yp:

Aeit =
1− 3i

10
(cos(t) + i sin(t))

so yp = 1
10

cos(t) + 3
10

sin(t), or all together:

y(t) = C1e
−t + C2e

−2t +
1

10
cos(t) +

3

10
sin(t)

9. Consider u′′ + pu′ + qu = cos(ωt). In the notes at the bottom of p. 4, we got that

ω =

√
2q − p2

2

Thinking of p as damping, if the damping is very very small, then approximately what
value of ω will result in a very large amplitude response?

SOLUTION: If the damping is very small, then the maximizer ω becomes very close to√
q, which is what we would expect from no damping (and then resonance).

10. (Assigned as part of the quiz)

11. Consider u′′ + u′ + 2u = cos(ωt). Find the value of ω that will maximize the amplitude
of the response.

NOTE: I don’t want you to memorize the value of ω. Rather, find the amplitude R,
then differentiate to find where the derivative is zero. Remember our shortcut (dealing
with f(ω)).

SOLUTION: Let yp = Aeiωt, and substituting it into the DE:

Aeiωt(−ω2 + iω + 2) = eiωt ⇒ A =
1

(2− ω2) + iω

3



The amplitude R is therefore:

R =
1

|(2− ω2) + iω|
=

1√
(2− ω2)2 + ω2

We looked at a shortcut for differentiating this and setting it to zero- That’s the same
as just differentiating (2− ω2)2 + ω2 and setting that to zero.

Doing that, we get ω =
√

62 ≈ 1.22. For fun, we can can R as a function of ω to see if
we’re accurate. Doing that, we get the figure below.

12. Pictured below are the graphs of several solutions to the differential equation:

y′′ + py′ + qy = cos(ωt)

Match the figure to the choice of parameters.

Choice b c ω
(A) 5 3 1
(B) 0 2 1
(C) 0 1 1
(D) 2 1 3

SOLUTION: I wanted you to see that one of the graphs was BEATING (lower left,
choice B), one was RESONANCE (upper left, choice C). To distinguish between the
other two, I wanted you to estimate the periods and work it out that way. For the upper
right graph, the period is approximately 2π, so the forcing function would have ω = 1
(choice A). The lower right function takes about 2π units to get 3 complete cycles, so
ω = 3 (and the choice is D)

13. Write the forced response to the ODE below as R cos(ωt− δ):

u′′ + u′ + 2u = cos(3t)
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SOLUTION: Using yp = Ae3it, we get

Ae3it(−9 + 2i+ 2) = e3it ⇒ A =
1

−7 + 3i

The amplitude R is then:

R =
1

| − 7 + 2i|
=

1√
58

δ = tan−1(−2/7) + π

NOTE: The actual, full yp can be computed as:

−7

58
cos(3t) +

3

58
sin(3t)

then R, δ would be the same thing- But why would you want to go through all that
work?

14. Suppose we can tune the value of q rather than the value of ω in the differential equation
(where ω = 3):

u′′ + u′ + qu = cos(3t)

Find the value of q that will maximize the amplitude of the forced response.

SOLUTION: Go through the usual computation:

Ae3it(−9 + 3i+ q) = e3it ⇒ A =
1

(q − 9) + 3i

Therefore, the amplitude as a function of q is:

R =
1√

(q − 9)2 + 9

To find the q that maximizes R, differentiate and set to zero. As before, we can use a
shortcut:

d

dq
(q − 9)2 + 9 = 0 ⇒ q = 9
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