Solutions to the Homework Replaces Section 3.8

1. Solve the IVP $u^{\prime \prime}+\omega_{0}^{2} u=F_{0} \cos (\omega t), u(0)=0$ and $u^{\prime}(0)=0$, if $\omega \neq \omega_{0}$.

SOLUTION: Rewriting the DE to complexify the right hand side,

$$
u^{\prime \prime}+\omega_{0}^{2} u=F_{0}(\cos (\omega) t+i \sin (\omega t)
$$

we'll solve the full problem, then (because the original function was cosine) take the real part.

$$
y_{p}=A \mathrm{e}^{i \omega t} \quad y_{p}^{\prime \prime}=-\omega^{2} \mathrm{e}^{-i \omega t} \quad \Rightarrow \quad A \mathrm{e}^{i \omega t}\left(-\omega^{2}+\omega_{0}^{2}\right)=F_{0} \mathrm{e}^{i \omega t}
$$

Therefore, $A=F_{0} /\left(\omega_{0}^{2}-\omega^{2}\right)$, and we want the real part of $A \mathrm{e}^{i \omega t}$:

$$
\left.y_{p}=\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}}() \cos (\omega t)+i \sin (\omega t)\right)
$$

The real part is our final answer. Including the homogenous part,

$$
u(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)+\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)
$$

Putting in the initial conditions,

$$
u(t)=\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right.
$$

2. Show that the period of motion of an undamped vibration of a mass hanging from a vertical spring is $2 \pi \sqrt{L / g}$
SOLUTION: With no damping, $m u^{\prime \prime}+k u=0$ has solution

$$
u(t)=A \cos \left(\sqrt{\frac{k}{m}} t\right)+B \sin \left(\sqrt{\frac{k}{m}} t\right)
$$

so the period is given below. We also note that $m g-k L=0$, and this equation yields the desired substitution:

$$
P=\frac{2 \pi}{\sqrt{\frac{k}{m}}}=2 \pi \sqrt{\frac{m}{k}} \quad \text { and } \quad m g=k L \quad \Rightarrow \quad \frac{k}{m}=\frac{g}{L}
$$

3. Convert the following to $R \cos (\omega t-\delta)$
(a) $\cos (9 t)-\sin (9 t)$

In this case, $R=\sqrt{2}$ and $\delta=\tan ^{-1}(-1)=-\pi / 4$
Note that in this case, we don't need to add π because $(1,-1)$ is in Quadrant IV.
(b) $2 \cos (3 t)+\sin (3 t)$

SOLUTION: $R=\sqrt{5}$ and $\omega=3$. The angle δ is computed as the argument of the point $(2,1)$, which you can leave as $\delta=\tan ^{-1}(1 / 2)$:

$$
2 \cos (3 t)+\sin (3 t)=\sqrt{5} \cos \left(3 t-\tan ^{-1}(1 / 2)\right)
$$

(c) $-2 \pi \cos (\pi t)-\pi \sin (\pi t)$

SOLUTION: Same idea, but note that $(-2 \pi,-\pi)$ is a point in Quadrant III, so we add (or subtract) π :

$$
R=\pi \sqrt{5} \quad \text { and } \quad \delta=\tan ^{-1}(1 / 2)+\pi \quad \text { and } \quad \omega=\pi
$$

(d) $5 \sin (t / 2)-\cos (t / 2)$

SOLUTION: Did you notice I reversed the sine and cosine on you (that was a mistake, but maybe it was a helpful one). The value of R and omega would be the same either way, but δ changes:

$$
R=\sqrt{26} \quad \omega=\frac{1}{2}
$$

For δ, notice that our "point" is $(-1,5)$ which is in Quadrant II, so add π :

$$
\sqrt{26} \cos \left(\frac{t}{2}-\tan ^{-1}(-5)-\pi\right)
$$

4. (Assigned as a quiz)
5. $u^{\prime \prime}+9 u=\cos (3.1 t)$

For this, the (circular) beat frequency is $\left|\omega_{0}-\omega\right|=1 / 10$ and the amplitude of a beat is $2 /\left(\omega_{0}^{2}-\omega^{2}\right)$, or approximately 3.28 . The particular part of the solution is

$$
\frac{1}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)=1.64 \cos (3.1 t)
$$

Not necessary, but we can check the figure below provided by Maple:

6. $u^{\prime \prime}+u=\cos (1.3 t)$

For this, the (circular) beat frequency is $3 / 10$ and the amplitude of a beat is $2 /\left(\omega_{0}^{2}-\omega^{2}\right)$, or approximately 2.9. The particular part of the solution is

$$
\frac{1}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)=1.45 \cos (1.3 t)
$$

7. Solve $u^{\prime \prime}+9 u=\cos (3 t)$ with zero ICs.

The solution is:

$$
u(t)=\frac{1}{6} t \sin (3 t)
$$

8. Find the general solution of the given differential equation:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\cos (t)
$$

First, get the homogeneous part of the solution by solving the characteristic equation:

$$
r^{2}+3 r+2=0 \quad \Rightarrow \quad(r+2)(r+1)=0 \quad \Rightarrow \quad r=-1,-2
$$

Therefore, $y_{h}(t)=C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{-2 t}$. Now use $y_{p}=A \mathrm{e}^{i t}$, and substitute:

$$
A \mathrm{e}^{i t}(-1+3 i+2)=\mathrm{e}^{i t} \quad \Rightarrow \quad A=\frac{1}{1+3 i}
$$

We want the real part of $A \mathrm{e}^{i t}$. The full expansion is given below- Just pick out the real part for y_{p} :

$$
A \mathrm{e}^{i t}=\frac{1-3 i}{10}(\cos (t)+i \sin (t))
$$

so $y_{p}=\frac{1}{10} \cos (t)+\frac{3}{10} \sin (t)$, or all together:

$$
y(t)=C_{1} \mathrm{e}^{-t}+C_{2} \mathrm{e}^{-2 t}+\frac{1}{10} \cos (t)+\frac{3}{10} \sin (t)
$$

9. Consider $u^{\prime \prime}+p u^{\prime}+q u=\cos (\omega t)$. In the notes at the bottom of p .4 , we got that

$$
\omega=\sqrt{\frac{2 q-p^{2}}{2}}
$$

Thinking of p as damping, if the damping is very very small, then approximately what value of ω will result in a very large amplitude response?
SOLUTION: If the damping is very small, then the maximizer ω becomes very close to \sqrt{q}, which is what we would expect from no damping (and then resonance).
10. (Assigned as part of the quiz)
11. Consider $u^{\prime \prime}+u^{\prime}+2 u=\cos (\omega t)$. Find the value of ω that will maximize the amplitude of the response.
NOTE: I don't want you to memorize the value of ω. Rather, find the amplitude R, then differentiate to find where the derivative is zero. Remember our shortcut (dealing with $f(\omega))$.
SOLUTION: Let $y_{p}=A \mathrm{e}^{i \omega t}$, and substituting it into the DE:

$$
A \mathrm{e}^{i \omega t}\left(-\omega^{2}+i \omega+2\right)=\mathrm{e}^{i \omega t} \quad \Rightarrow \quad A=\frac{1}{\left(2-\omega^{2}\right)+i \omega}
$$

The amplitude R is therefore:

$$
R=\frac{1}{\left|\left(2-\omega^{2}\right)+i \omega\right|}=\frac{1}{\sqrt{\left(2-\omega^{2}\right)^{2}+\omega^{2}}}
$$

We looked at a shortcut for differentiating this and setting it to zero- That's the same as just differentiating $\left(2-\omega^{2}\right)^{2}+\omega^{2}$ and setting that to zero.
Doing that, we get $\omega=\sqrt{6} 2 \approx 1.22$. For fun, we can can R as a function of ω to see if we're accurate. Doing that, we get the figure below.

12. Pictured below are the graphs of several solutions to the differential equation:

$$
y^{\prime \prime}+p y^{\prime}+q y=\cos (\omega t)
$$

Match the figure to the choice of parameters.

Choice	b	c	ω
(A)	5	3	1
(B)	0	2	1
(C)	0	1	1
(D)	2	1	3

SOLUTION: I wanted you to see that one of the graphs was BEATING (lower left, choice B), one was RESONANCE (upper left, choice C). To distinguish between the other two, I wanted you to estimate the periods and work it out that way. For the upper right graph, the period is approximately 2π, so the forcing function would have $\omega=1$ (choice A). The lower right function takes about 2π units to get 3 complete cycles, so $\omega=3$ (and the choice is D)
13. Write the forced response to the ODE below as $R \cos (\omega t-\delta)$:

$$
u^{\prime \prime}+u^{\prime}+2 u=\cos (3 t)
$$

SOLUTION: Using $y_{p}=A \mathrm{e}^{3 i t}$, we get

$$
A \mathrm{e}^{3 i t}(-9+2 i+2)=\mathrm{e}^{3 i t} \quad \Rightarrow \quad A=\frac{1}{-7+3 i}
$$

The amplitude R is then:

$$
R=\frac{1}{|-7+2 i|}=\frac{1}{\sqrt{58}} \quad \delta=\tan ^{-1}(-2 / 7)+\pi
$$

NOTE: The actual, full y_{p} can be computed as:

$$
\frac{-7}{58} \cos (3 t)+\frac{3}{58} \sin (3 t)
$$

then R, δ would be the same thing- But why would you want to go through all that work?
14. Suppose we can tune the value of q rather than the value of ω in the differential equation (where $\omega=3$):

$$
u^{\prime \prime}+u^{\prime}+q u=\cos (3 t)
$$

Find the value of q that will maximize the amplitude of the forced response.
SOLUTION: Go through the usual computation:

$$
A \mathrm{e}^{3 i t}(-9+3 i+q)=\mathrm{e}^{3 i t} \quad \Rightarrow \quad A=\frac{1}{(q-9)+3 i}
$$

Therefore, the amplitude as a function of q is:

$$
R=\frac{1}{\sqrt{(q-9)^{2}+9}}
$$

To find the q that maximizes R, differentiate and set to zero. As before, we can use a shortcut:

$$
\frac{d}{d q}(q-9)^{2}+9=0 \quad \Rightarrow \quad q=9
$$

