Sample Questions (Chapter 3, Math 244)

1. True or False?
(a) The characteristic equation for $y^{\prime \prime}+y^{\prime}+y=1$ is $r^{2}+r+1=1$
(b) The characteristic equation for $y^{\prime \prime}+x y^{\prime}+\mathrm{e}^{x} y=0$ is $r^{2}+x r+\mathrm{e}^{x}=0$
(c) The function $y=0$ is always a solution to a second order linear homogeneous differential equation.
(d) In using the Method of Undetermined Coefficients, the ansatz

$$
y_{p}=\left(A x^{2}+B x+C\right)(D \sin (x)+E \cos (x)) \text { is equivalent to }
$$

$$
y_{p}=\left(A x^{2}+B x+C\right) \sin (x)+\left(D x^{2}+E x+F\right) \cos (x)
$$

(e) The operator $T(y)=y^{\prime}+t^{2} y+1$ is a linear operator (in y).
2. (a) First, solve the DE: $y^{\prime \prime}+4 y^{\prime}+3 y=0$. (b) Use Cramer's rule to find the constants, if the initial conditions are $y(0)=1, y^{\prime}(0)=\alpha$.
3. Construct the operator associated with the differential equation: $y^{\prime}=y^{2}-4$. Is the operator linear? Show that your answer is true by using the definition of a linear operator.
4. What do we need to check in order to see if two functions, $y_{1} \cdot y_{2}$ form a fundamental set of solutions to a given second order linear homogeneous DE?
5. If $W(f, g)=t^{2} \mathrm{e}^{t}$ and $f(t)=t$, find $g(t)$.
6. If y_{1}, y_{2} form a fundamental set of solutions to: $t^{2} y^{\prime \prime}-2 y^{\prime}+(3+t) y=0$, and if $W\left(y_{1}, y_{2}\right)(2)=3$, find $W\left(y_{1}, y_{2}\right)(4)$.
7. Given that $y_{1}=\frac{1}{t}$ solves the differential equation: $t^{2} y^{\prime \prime}-2 y=0$, find a fundamental set of solutions using Abel's Theorem.
8. Give the general solution:
(a) $y^{\prime \prime}-3 y^{\prime}-10 y=0$
(b) $y^{\prime \prime}+4 y^{\prime}+4 y=0$
(c) $y^{\prime \prime}-4 y^{\prime}+5 y=0$
9. Suppose the roots to the characteristic equation are as given below. Write the general solution to the DE, and write down what the second order linear homogeneous DE was.
(a) $r=-2,3$
(b) $r=1,1$
(c) $r=2 \pm 3 i$
10. Rewrite the expression in the form $a+i b$: (i) 2^{i-1} (ii) $\mathrm{e}^{(3-2 i) t}$ (iii) $\mathrm{e}^{i \pi}$
11. Write $a+i b$ in polar form: (i) $-1-\sqrt{3} i$ (ii) $3 i$ (iii) -4 (iv) $\sqrt{3}-i$
12. Write each expression as $R \cos (\omega t-\delta)$
(a) $3 \cos (2 t)+4 \sin (2 t)$
(b) $-\cos (t)+\sqrt{3} \sin (t)$
(c) $4 \cos (3 t)-2 \sin (3 t)$
13. Practice setting up the Spring-Mass model: If you need it, $g \approx 9.8=\frac{49}{5}$.
(a) Suppose a mass of 0.01 kg is suspended from a spring, and the damping factor is $\gamma=0.05$. If there is no external forcing, then what would the spring constant have to be in order for the system to critically damped? underdamped?
(b) A mass of 0.5 kg stretches a spring an additional 0.05 meters to get to equilibrium. (i) Find the spring constant. (ii) Does a stiff spring have a large spring constant or a small spring constant (explain).
(c) It takes 6 N of force to stretch a certain spring 3 meters. A mass of $\frac{1}{2} \mathrm{~kg}$ is attached to a spring. (a) Find the spring constant, and (b) if the damping constant is 2 , write the differential equation for the motion of the mass.
(d) Given the model of motion of the mass on a spring is given by

$$
\frac{1}{2} u^{\prime \prime}+\gamma u^{\prime}+8 u=0
$$

Find γ so that the spring is underdamped, critically damped, overdamped.
14. Solve. If there are initial conditions, solve for all constants, otherwise, find the general solution.
(a) $u^{\prime \prime}+u=3 t+4, u(0)=0, u^{\prime}(0)=0$.
(b) $u^{\prime \prime}+u=\cos (2 t), u(0)=0, u^{\prime}(0)=0$
(c) $u^{\prime \prime}+u=\cos (t), u(0)=0, u^{\prime}(0)=0$ (And please compare to the previous problem).
(d) $y^{\prime \prime}+4 y^{\prime}+4 y=\mathrm{e}^{-2 t}$
(e) $y^{\prime \prime}-2 y^{\prime}+y=t \mathrm{e}^{t}+4, y(0)=1, y^{\prime}(0)=1$.
15. Find a second order linear differential equation with constant coefficients whose general solution is given by:

$$
y(t)=C_{1}+C_{2} \mathrm{e}^{-t}+\frac{1}{2} t^{2}-t
$$

16. Determine the longest interval for which the IVP is certain to have a unique solution (Do not solve the IVP):

$$
t(t-4) y^{\prime \prime}+3 t y^{\prime}+4 y=2 \quad y(3)=0 \quad y^{\prime}(3)=-1
$$

17. Let $L(y)=a y^{\prime \prime}+b y^{\prime}+c y$ for some value(s) of a, b, c.

If $L\left(3 \mathrm{e}^{2 t}\right)=-9 \mathrm{e}^{2 t}$ and $L\left(t^{2}+3 t\right)=5 t^{2}+3 t-16$, what is the particular solution to:

$$
L(y)=-10 t^{2}-6 t+32+\mathrm{e}^{2 t}
$$

18. For each DE below, use the Method of Undetermined Coefficients to give the final form of your guess for the particular solution, $y_{p}(t)$. Do NOT solve for the coefficients.
(a) $y^{\prime \prime}+3 y^{\prime}=t^{3}+t^{2} \mathrm{e}^{-t}+\sin (3 t)$
(b) $y^{\prime \prime}+y=t(1+\sin (t))$
(c) $y^{\prime \prime}-5 y^{\prime}+6 y=\mathrm{e}^{2 t}(3 t+4) \sin (t)$
(d) $y^{\prime \prime}+2 y^{\prime}+2 y=3 \mathrm{e}^{-t}+2 \mathrm{e}^{-t} \cos (t)+4 \mathrm{e}^{-t} t^{2} \sin (t)$
19. Each equation below exhibits either beating, resonance, or neither. Label each one with B, R, or N.
(a) $y^{\prime \prime}+3 y=\cos (3 t)$
(b) $y^{\prime \prime}+9 y=\cos (3 t)$
(c) $y^{\prime \prime}+(1.1)^{2} y=\sin (t)$
(d) $y^{\prime \prime}+3 y=\cos (9 t)$

Be sure to remember that separate homework sheet that took the place of Section 3.8.

