Sample Questions (Chapter 3, Math 244)

- 1. True or False?
 - (a) The characteristic equation for y'' + y' + y = 1 is $r^2 + r + 1 = 1$
 - (b) The characteristic equation for $y'' + xy' + e^x y = 0$ is $r^2 + xr + e^x = 0$
 - (c) The function y = 0 is always a solution to a second order linear homogeneous differential equation.
 - (d) In using the Method of Undetermined Coefficients, the ansatz $y_p = (Ax^2 + Bx + C)(D\sin(x) + E\cos(x))$ is equivalent to

$$y_p = (Ax^2 + Bx + C)\sin(x) + (Dx^2 + Ex + F)\cos(x)$$

- (e) The operator $T(y) = y' + t^2y + 1$ is a linear operator (in y).
- 2. (a) First, solve the DE: y'' + 4y' + 3y = 0. (b) Use Cramer's rule to find the constants, if the initial conditions are y(0) = 1, $y'(0) = \alpha$.
- 3. Construct the operator associated with the differential equation: $y' = y^2 4$. Is the operator linear? Show that your answer is true by using the definition of a linear operator.
- 4. What do we need to check in order to see if two functions, $y_1.y_2$ form a **fundamental set of solutions** to a given second order linear homogeneous DE?
- 5. If $W(f,g) = t^2 e^t$ and f(t) = t, find g(t).
- 6. If y_1, y_2 form a fundamental set of solutions to: $t^2y'' 2y' + (3+t)y = 0$, and if $W(y_1, y_2)(2) = 3$, find $W(y_1, y_2)(4)$.
- 7. Given that $y_1 = \frac{1}{t}$ solves the differential equation: $t^2y'' 2y = 0$, find a fundamental set of solutions using Abel's Theorem.
- 8. Give the general solution:

(a)
$$y'' - 3y' - 10y = 0$$
 (b) $y'' + 4y' + 4y = 0$ (c) $y'' - 4y' + 5y = 0$

- 9. Suppose the roots to the characteristic equation are as given below. Write the general solution to the DE, and write down what the second order linear homogeneous DE was.
 - (a) r = -2, 3 (b) r = 1, 1 (c) $r = 2 \pm 3i$
- 10. Rewrite the expression in the form a + ib: (i) 2^{i-1} (ii) $e^{(3-2i)t}$ (iii) $e^{i\pi}$
- 11. Write a + ib in polar form: (i) $-1 \sqrt{3}i$ (ii) 3i (iii) -4 (iv) $\sqrt{3} i$
- 12. Write each expression as $R\cos(\omega t \delta)$
 - (a) $3\cos(2t) + 4\sin(2t)$ (b) $-\cos(t) + \sqrt{3}\sin(t)$ (c) $4\cos(3t) 2\sin(3t)$
- 13. Practice setting up the Spring-Mass model: If you need it, $g \approx 9.8 = \frac{49}{5}$.
 - (a) Suppose a mass of 0.01 kg is suspended from a spring, and the damping factor is $\gamma = 0.05$. If there is no external forcing, then what would the spring constant have to be in order for the system to *critically damped? underdamped?*

- (b) A mass of 0.5 kg stretches a spring an additional 0.05 meters to get to equilibrium. (i) Find the spring constant. (ii) Does a stiff spring have a large spring constant or a small spring constant (explain).
- (c) It takes 6 N of force to stretch a certain spring 3 meters. A mass of ¹/₂ kg is attached to a spring.
 (a) Find the spring constant, and (b) if the damping constant is 2, write the differential equation for the motion of the mass.
- (d) Given the model of motion of the mass on a spring is given by

$$\frac{1}{2}u'' + \gamma u' + 8u = 0$$

Find γ so that the spring is underdamped, critically damped, overdamped.

- 14. Solve. If there are initial conditions, solve for all constants, otherwise, find the general solution.
 - (a) u'' + u = 3t + 4, u(0) = 0, u'(0) = 0.
 - (b) $u'' + u = \cos(2t), u(0) = 0, u'(0) = 0$
 - (c) $u'' + u = \cos(t)$, u(0) = 0, u'(0) = 0 (And please compare to the previous problem).
 - (d) $y'' + 4y' + 4y = e^{-2t}$
 - (e) $y'' 2y' + y = te^t + 4, y(0) = 1, y'(0) = 1.$
- 15. Find a second order linear differential equation with constant coefficients whose general solution is given by:

$$y(t) = C_1 + C_2 e^{-t} + \frac{1}{2}t^2 - t$$

16. Determine the longest interval for which the IVP is certain to have a unique solution (Do not solve the IVP):

$$t(t-4)y'' + 3ty' + 4y = 2 \qquad y(3) = 0 \quad y'(3) = -1$$

17. Let L(y) = ay'' + by' + cy for some value(s) of a, b, c. If $L(3e^{2t}) = -9e^{2t}$ and $L(t^2 + 3t) = 5t^2 + 3t - 16$, what is the particular solution to:

$$L(y) = -10t^2 - 6t + 32 + e^{2t}$$

- 18. For each DE below, use the Method of Undetermined Coefficients to give the final form of your guess for the particular solution, $y_p(t)$. Do NOT solve for the coefficients.
 - (a) $y'' + 3y' = t^3 + t^2 e^{-t} + \sin(3t)$ (b) $y'' + y = t(1 + \sin(t))$ (c) $y'' - 5y' + 6y = e^{2t}(3t + 4)\sin(t)$ (d) $y'' + 2y' + 2y = 3e^{-t} + 2e^{-t}\cos(t) + 4e^{-t}t^2\sin(t)$
- 19. Each equation below exhibits either **beating**, **resonance**, or **neither**. Label each one with B, R, or N.
 - (a) $y'' + 3y = \cos(3t)$ (b) $y'' + 9y = \cos(3t)$
 - (c) $y'' + (1.1)^2 y = \sin(t)$
 - (d) $y'' + 3y = \cos(9t)$

Be sure to remember that separate homework sheet that took the place of Section 3.8.