Solutions to the Homework Replaces Section 3.8

1. Solve the IVP $u^{\prime \prime}+\omega_{0}^{2} u=F_{0} \cos (\omega t), u(0)=0$ and $u^{\prime}(0)=0$, if $\omega \neq \omega_{0}$.

SOLUTION: If $\omega \neq \omega_{0}$, it's pretty straightforward:

$$
u_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right), \quad u_{p}(t)=A \cos (\omega t)+B \sin (\omega t)
$$

You should be able to find that the full solution (with zero initial conditions) is

$$
u(t)=\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}}\left(\cos (\omega t)-\cos \left(\omega_{0} t\right)\right)
$$

2. Show that the period of motion of an undamped vibration of a mass hanging from a vertical spring is $2 \pi \sqrt{L / g}$
SOLUTION: With no damping, $m u^{\prime \prime}+k u=0$ has solution

$$
u(t)=A \cos \left(\sqrt{\frac{k}{m}} t\right)+B \sin \left(\sqrt{\frac{k}{m}} t\right)
$$

so the period is given below. We also note that $m g-k L=0$, and this equation yields the desired substitution:

$$
P=\frac{2 \pi}{\sqrt{\frac{k}{m}}}=2 \pi \sqrt{\frac{m}{k}} \quad \text { and } \quad m g=k L \quad \Rightarrow \quad \frac{k}{m}=\frac{g}{L}
$$

3. Convert the following to $R \cos (\omega t-\delta)$
(a) $\cos (9 t)-\sin (9 t)$

In this case, $R=\sqrt{2}$ and $\delta=\tan ^{-1}(-1)=-\pi / 4$
Note that in this case, we don't need to add π because $(1,-1)$ is in Quadrant IV.
(b) $2 \cos (3 t)+\sin (3 t)$

SOLUTION: $R=\sqrt{5}$ and $\omega=3$. The angle δ is computed as the argument of the point $(2,1)$, which you can leave as $\delta=\tan ^{-1}(1 / 2)$:

$$
2 \cos (3 t)+\sin (3 t)=\sqrt{5} \cos \left(3 t-\tan ^{-1}(1 / 2)\right)
$$

(c) $-2 \pi \cos (\pi t)-\pi \sin (\pi t)$

SOLUTION: Same idea, but note that $(-2 \pi,-\pi)$ is a point in Quadrant III, so we add (or subtract) π :

$$
R=\pi \sqrt{5} \quad \text { and } \quad \delta=\tan ^{-1}(1 / 2)+\pi \quad \text { and } \quad \omega=\pi
$$

(d) $5 \sin (t / 2)-\cos (t / 2)$

SOLUTION: Did you notice I reversed the sine and cosine on you (that was a mistake, but maybe it was a helpful one). The value of R and ω would be the same either way, but δ changes:

$$
R=\sqrt{26} \quad \omega=\frac{1}{2}
$$

For δ, notice that our "point" is $(-1,5)$ which is in Quadrant II, so add π :

$$
\sqrt{26} \cos \left(\frac{t}{2}-\tan ^{-1}(-5)-\pi\right)
$$

4. $u^{\prime \prime}+4 u=\cos (2.8 t)$

TOLUTION: The (circular) frequency of the beats is $\left|\omega_{0}-\omega\right|$, or in this case, 0.8 or $4 / 5$.
The particular part of the solution is

$$
\frac{F_{0}}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)=\frac{1}{3.84} \cos (2.8 t) \approx 0.26 \cos (2.8 t)
$$

5. $u^{\prime \prime}+9 u=\cos (3.1 t)$

For this, the (circular) beat frequency is $\left|\omega_{0}-\omega\right|=1 / 10$. The particular part of the solution is

$$
\frac{1}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)=-1.64 \cos (3.1 t)
$$

6. $u^{\prime \prime}+u=\cos (1.3 t)$

For this, the (circular) beat frequency is $3 / 10$. The particular part of the solution is

$$
\frac{1}{\omega_{0}^{2}-\omega^{2}} \cos (\omega t)=-1.45 \cos (1.3 t)
$$

7. Solve $u^{\prime \prime}+9 u=\cos (3 t)$ with zero ICs.

The solution is:

$$
u(t)=\frac{1}{6} t \sin (3 t)
$$

8. Find the particular solution of the given differential equation:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=\cos (t)
$$

SOLUTION: Using the Method of Undetermined Coefficients, we have

$$
y_{p}=A \cos (t)+B \sin (t)
$$

And substitute into the DE to solve for A, B. It takes a little bit of bookkeeping, but we should get:

$$
\frac{1}{10} \cos (t)+\frac{3}{10} \sin (t)
$$

9. Consider $u^{\prime \prime}+p u^{\prime}+q u=\cos (\omega t)$. In the notes at the bottom of p. 4 , we got that

$$
\omega=\sqrt{\frac{2 q-p^{2}}{2}}
$$

Thinking of p as damping, if the damping is very very small, then approximately what value of ω will result in a very large amplitude response?
SOLUTION: If the damping is very small, then the maximizer ω becomes very close to \sqrt{q}, which is what we would expect from no damping (and then resonance).
10. Consider $u^{\prime \prime}+u^{\prime}+2 u=\cos (\omega t)$. Find the value of ω that will maximize the amplitude of the response.

NOTE: I don't want you to memorize the value of ω. Rather, find the amplitude R, then differentiate to find where the derivative is zero. Remember our shortcut (dealing with $f(\omega)$).
SOLUTION: Differentiate the given R with respect to ω (remember the shortcut):

$$
R=\frac{1}{\sqrt{\left(2-\omega^{2}\right)^{2}+\omega^{2}}}
$$

We looked at a shortcut for differentiating this and setting it to zero- That's the same as just differentiating $\left(2-\omega^{2}\right)^{2}+\omega^{2}$ and setting that to zero.
Doing that, we get $\omega=\sqrt{6} 2 \approx 1.22$.
11. Suppose we can tune the value of q rather than the value of ω in the differential equation (where $\omega=3$):

$$
u^{\prime \prime}+u^{\prime}+q u=\cos (3 t)
$$

Find the value of q that will maximize the amplitude of the forced response.
SOLUTION: Using the formula for R that would be given (as in the previous problem),

$$
R=\frac{1}{\sqrt{(q-9)^{2}+9}}
$$

To find the q that maximizes R, differentiate and set to zero. As before, we can use a shortcut:

$$
\frac{d}{d q}\left[(q-9)^{2}+9\right]=0 \quad \Rightarrow \quad q=9
$$

