
Selected solutions, Section 5.2

We’ll just get the recurrence relation for the power series solutions to 1, 3, 4, 6 and 7.

1. y′′ − y = 0, x0 = 0.

SOLUTION: Use the ansatz- in this case, based at x0 = 0, we use: y =
∞∑
n=0

anx
n,

y′′ =
∞∑
n=2

n(n− 1)anx
n−2.

Substitution into the DE,

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=0

anx
n = 0

To make this into a single sum, be sure your series all begin with the same power (in
this case, the first term of both sums has x0). Substitute for each index- in the first
sum, let m = n− 2 (or n = m+ 2), and m = n. Then:

∞∑
m=0

(m+ 2)(m+ 1)am+2x
m −

∞∑
m=0

amx
m = 0

Now we can make this into a single sum:

∞∑
m=0

((m+ 2)(m+ 1)am+2 − am)x
m = 0

Each coefficient must be zero, which gives us the recurrence relation (solve for am+2):

(m+ 2)(m+ 1)am+2 − am = 0 ⇒ am+2 =
am

(m+ 1)(m+ 2)
, for m = 0, 1, 2, 3, . . .

3. y′′ − xy′ − y = 0, x0 = 1.

Ansatz: y =
∞∑
n=0

an(x − 1)n, so that the derivatives are y′ =
∞∑
n=1

nan(x − 1)n−1, and

y′′ =
∞∑
n=2

n(n− 1)an(x− 1)n−2.

The differential equation becomes:

∞∑
n=2

n(n− 1)an(x− 1)n−2 − x
∞∑
n=1

nan(x− 1)n−1 −
∞∑
n=0

an(x− 1)n = 0

In the middle expression, we need to incorporate the x into the sum. Since our sum is
in powers of x− 1, we’ll re-write x = ((x− 1) + 1), so just working with this sum, we
have:

x
∞∑
n=1

nan(x−1)n−1 = ((x−1)+1)
∞∑
n=1

nan(x−1)n−1 =
∞∑
n=1

nan(x−1)n+
∞∑
n=1

nan(x−1)n−1

1



Now we have 4 sums to make into one sum:

∞∑
n=2

n(n− 1)an(x− 1)n−2 −
∞∑
n=1

nan(x− 1)n −
∞∑
n=1

nan(x− 1)n−1 −
∞∑
n=0

an(x− 1)n = 0

We note that all the sums except for the second have a first term (x− 1)0. So we can
change the index of the second sum to start at n = 0 instead of n = 1 (the first term
will be 0(x− 1)0, so we’re not changing the sum). Doing that,

∞∑
n=2

n(n− 1)an(x− 1)n−2 −
∞∑
n=0

nan(x− 1)n −
∞∑
n=1

nan(x− 1)n−1 −
∞∑
n=0

an(x− 1)n = 0

Unify the index so that all have (x− 1)m. For each sum above, we make the following
substitutions (respectively):

m = n− 2
n = m+ 2

m = n
m = n− 1
n = m+ 1

m = n

Now the sums can be combined:

∞∑
m=0

((m+ 2)(m+ 1)am+2 −mam − (m+ 1)am+1 − am) (x− 1)m = 0

This equation holds true for all x in the radius of convergence, so each of the coefficients
must be zero.

(m+ 2)(m+ 1)am+2 −mam − (m+ 1)am+1 − am = 0

Solving for am+2 gives us the recurrence relation:

am+2 =
(m+ 1)am+1 + (m+ 1)am

(m+ 1)(m+ 2)
=

am+1 + am
m+ 2

, for m = 0, 1, 2, . . .

4. y′′ + k2x2y = 0, x0 = 0, k is a constant.

Ansatz: y =
∞∑
n=0

anx
n, and we only need y′′ in this case, where

y′′ =
∞∑
n=2

n(n− 1)anx
n−2.

The differential equation becomes:

∞∑
n=2

n(n− 1)anx
n−2 + k2x2

∞∑
n=0

anx
n = 0

Incorporate the k2x2 into the second sum:

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

k2anx
n+2 = 0

2



To combine sums, the starting powers should be the same. They are not, since the first
sum starts with x0 and the second with x2. The complication here is that we can’t
simply start the second index at a smaller number. However, consider writing out the
terms of the first sum:

2 · 1 · a2x0 + 3 · 2 · a3x1 + 4 · 3 · a4x2 + 5 · 4 · a5x3 + · · ·

Therefore we can rewrite the first sum as:

2a2 + 6a3x+
∞∑
n=4

n(n− 1)anx
n−2

And now the first power of the sum is x2, as desired. Substitute this into the first sum
to get:

2a2 + 6a3x+
∞∑
n=4

n(n− 1)anx
n−2 +

∞∑
n=0

k2anx
n+2 = 0

Now, in the first sum, let m = n−2 (or n = m+2), and in the last sum, let m = n+2
(or m = m− 2). Now we can combine sums:

2a2 + 6a3x+
∞∑

m=2

((m+ 2)(m+ 1)am+2 + k2am−2)x
m = 0

Now we set the coefficients to zero, as usual. From the first two terms, we see that

a2 = 0, a3 = 0

and for all other terms:

am+2 =
−k2

(m+ 2)(m+ 1)
am−2 for m = 2, 3, 4, . . .

6. (2 + x2)y′′ − xy′ + 4y = 0, x0 = 0.

Ansatz: y =
∞∑
n=0

anx
n, so that the derivatives are

y′ =
∞∑
n=1

nanx
n−1, and y′′ =

∞∑
n=2

n(n− 1)anx
n−2.

The differential equation becomes:

(2 + x2)
∞∑
n=2

n(n− 1)anx
n−2 − x

∞∑
n=1

nanx
n−1 + 4

∞∑
n=0

anx
n = 0

The first two sums need some work- let’s start by incorporating (2 + x2) into the first
sum:

(2 + x2)
∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=2

2n(n− 1)anx
n−2 +

∞∑
n=2

n(n− 1)anx
n
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We might as well make every power start with x0 while we’re at it, so the index of the
last sum above can be written as n = 0 rather than n = 2:

(2 + x2)
∞∑
n=2

n(n− 1)anx
n−2 =

∞∑
n=2

2n(n− 1)anx
n−2 +

∞∑
n=0

n(n− 1)anx
n

In the middle expression, we need to incorporate the x into the sum. In this case, it’s
straightforward since we have powers of x (and we’ll go ahead and make the sum begin
with x0):

x
∞∑
n=1

nanx
n−1 =

∞∑
n=1

nanx
n =

∞∑
n=0

nanx
n

Now we have 4 sums to make into one sum:

∞∑
n=2

2n(n− 1)anx
n−2 +

∞∑
n=0

n(n− 1)anx
n −

∞∑
n=0

nanx
n +

∞∑
n=0

4anx
n = 0

In the first sum, let m = n − 2 (or n = m + 2), and for the others, m = n. Then
combining sums gives us:

∞∑
m=0

(2(m+ 2)(m+ 1)am+2 + (m(m− 1)−m+ 4) am)x
m = 0

Solve for the recurrence relation:

am+2 =
m2 − 2m+ 4

2(m+ 2)(m+ 1)
am for m = 0, 1, 2, . . .

7. y′′ + xy′ + 2y = 0, x0 = 0.

Ansatz: y =
∞∑
n=0

anx
n, so that the derivatives are

y′ =
∞∑
n=1

nanx
n−1, and y′′ =

∞∑
n=2

n(n− 1)anx
n−2.

The differential equation becomes:

∞∑
n=2

n(n− 1)anx
n−2 + x

∞∑
n=1

nanx
n−1 + 2

∞∑
n=0

anx
n = 0

In the middle expression, we need to incorporate the x into the sum. In this case, it’s
straightforward since we have powers of x (and we’ll go ahead and make the sum begin
with x0):

x
∞∑
n=1

nanx
n−1 =

∞∑
n=1

nanx
n =

∞∑
n=0

nanx
n
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With that, we can combine the three sums:

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

nanx
n +

∞∑
n=0

2anx
n = 0

In the first sum, let m = n − 2 (or n = m + 2), and for the others, m = n. Then
combining sums gives us:

∞∑
m=0

((m+ 2)(m+ 1)am+2 + (m+ 2)am)x
m = 0

Solve for the recurrence relation:

am+2 = − 1

m+ 1
am for m = 0, 1, 2, . . .

For problems 15, 17, 18 below, the textbook had you going back to the recurrence
relation to find the terms of the sum, but we want to practice using the derivatives to find
the terms of the sum.

We determine the first five non-zero terms in the solution by taking the derivatives, where
we use the relationship between the coefficients and the derivatives:

an =
y(n)(x0)

n!

15. y′′ − xy′ − y = 0 with y(0) = 2, y′(0) = 1.

Solution:

From the initial conditions, a0 = 2 and a1 = 1. Now find y′′(0):

y′′ = xy′ + y ⇒ y′′(0) = 0 · y′(0) + y(0) ⇒ y′′(0) = y(0) = 2

Now y′′′(0):

y′′′ = y′ + xy′′ + y′ = 2y′ + xy′′ ⇒ y′′′(0) = 2 · y′(0) = 2

Now y(4)(0):

y(4) = 2y′′ + y′′ + xy′′′ ⇒ y(4)(0) = 3y′′(0) = 3 · 2 = 6

The coefficients thus far are:

a0 = 2, a1 = 1, a2 =
2

2!
= 1, a3 =

2

3!
=

1

3
, a4 =

6

4!
=

1

4

And the power series is:

y(x) = 2 + x+ x2 +
1

3
x3 +

1

4
x4 + h.o.t.

5



17. y′′ + xy + 2y = 0, with y(0) = 4, y′(0) = −1.

SOLUTION:

From the initial conditions, a0 = 4 and a1 = −1. Now find y′′(0):

y′′ = −xy′ − 2y ⇒ y′′(0) = −0 · y′(0)− 2y(0) ⇒ y′′(0) = −8

Now y′′′(0):

y′′′ = −y′ − xy′′ − 2y′ = −3y′ − xy′′ ⇒ y′′′(0) = (−3)(−1) = 3

Now y(4)(0):

y(4) = −3y′′ − y′′ − xy′′′ = −4y′′ − xy′′′ ⇒ y(4)(0) = −4y′′(0) = (−4)(−8) = 32

Now the coefficients of our sum:

a0 = 4, a1 = −1, a2 =
−8

2!
= −4, a3 =

3

3!
=

1

2
, a4 =

32

4!
=

4

3

The power series is then:

y(x) = 4− x− 4x2 +
1

2
x3 +

4

3
x4 + h.o.t.

18. (1− x)y′′ + xy′ − y = 0 with y(0) = −3 and y′(0) = 2.

In this problem, we also want to determine the first five terms using the derivatives of
y. It may be easiest to ”differentiate in place” rather than solve for y′′ first. That is,
for y′′(0):

(1− 0)y′′(0) + 0− y(0) = 0 ⇒ y′′(0) = y(0) = −3

And now differentiate (use the product rule on (1− x)y′′):

−1y′′ + (1− x)y′′′ + y′ + xy′′ − y′ = 0 ⇒ (1− x)y′′′ + (x− 1)y′′ = 0 ⇒

(1− 0)y′′′(0)− y′′(0) = 0 ⇒ y′′′(0) = y′′(0) = −3

And one more time, using (1− x)y′′′ + (x− 1)y′′ = 0:

−1y′′′ + (1− x)y(4) + 1y′′ + (x− 1)y′′′ = 0 ⇒

y(4)(0) = −y′′(0) + 2y′′′(0) = 3 + 2(−3) = −3

Now, we can write the series (remember to divide by n!):

y(x) = −3 + 2x− 3

2!
x2 − 3

3!
x2 − 3

4!
x4 + · · ·

For extra practice, we can use the technique in 15-18 to solve this one as well:

y′′ + x2y′ + sin(x) y = 0;
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