
Sections 3.8

Last time, we focused our attention on the spring-mass model that had no forcing. Today,
we look at the special case of periodic forcing. First we look at periodic forcing when
there is no damping, then finally we look at the full model with damping.

Prelude: Adding wave forms together

Consider what happens when we subtract (or add) two waves together of slightly different
angular frequency- Formally, we might consider this as a difference of cosines, where
ω ≈ ω0. There is an identity that allows us to write this as a product of sines:

cos(ωt)− cos(ω0t) = 2 sin
(
ω + ω0

2
t
)

sin
(
ω − ω0

2
t
)

The graph has an “envelope” with the larger period, and a faster moving wave inside of it.

This phenomenon is known as beating. The envelope uses the sine with the difference
of ω’s:

sin
(
ω − ω0

2
t
)

In the figure, ω = 1 and ω0 = 1.1. The overall period would be

2 · 2π
0.1

≈ 125.66
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But we see that the period of one beat would actually be half that, 2π/|ω − ω0| ≈ 60. In
general, we see that the angular frequency of one beat is |ω − ω0|.

Back to our Model: No Damping, Periodic Forcing

Rather than write the model as mu′′+ku = F (t), it is common practice to write the model as
u′′+ω2

0u = F (t). That way it is easy to read off the angular frequency of the homogenous part
of the solution (ω0). Putting in the periodic forcing (we’ll use cosine), the model becomes:

u′′ + ω2
0u = F0 cos(ωt)

And, as long as the ω0 6= ω, the general solution is:

u(t) = C1 cos(ω0t) + C2 sin(ω0t) +
F0

w2
0 − w2

cos(wt)

It can be shown that, if we use zero initial conditions u(0) = u′(0) = 0, then

C1 = − F0

ω2
0 − ω2

C2 = 0

In this case,

u(t) =
F0

ω2
0 − ω2

(cos(wt)− cos(w0t))

Therefore, when ω ≈ ω0, we get a phenomena known as beating, which occurs when two
waveforms of almost the same frequency are added (or subtracted).

From the first part of the notes, we see that the angular frequency of one beat is |ω−ω0|.
However, also note what happens with the amplitude. Since ω2

0 − ω2 → 0, the amplitude
of the beating goes to infinity, and this causes what is known as resonance.

Resonance

Resonance occurs when the natural frequency and the forcing frequency match: ω = ω0.
What does this look like graphically and algebraically?
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� Graphically, we see that the period of
the larger beat becomes infinitely long,
with an infinitely large amplitude.

� Algebraically, we can find the solution
using l’Hospital’s rule:

lim
w→w0

F0 (cos(wt)− cos(w0t))

w2
0 − w2

=

lim
ω→ω0

−F0t sin(ωt)

−2ω
=

F0

2ω0

t sin(ω0t)

We could have solved this using the Method of Undetermined Coefficients as well, and
we would have multiplied the ansatz by t.

Bringing in Damping: The Full Model

When we have the full damped system, then all solutions will tend to zero as t→∞. How
do we know that? Given

mu′′ + γu′ + ku = F0 cos(ωt)

We will never have purely periodic solutions for yh, therefore, yp will never have the mul-
tiplication by t (by undetermined coefficients). HOWEVER, we will still analyze a slightly
changed version of the system:

u′′ + pu′ + qu = cos(ωt)

It takes a bit of work, but it can be shown that the particular solution can be expressed
as

R cos(ωt− δ)

where (we won’t use δ):

R =
1√

(q − ω2)2 + p2ω2

The key question:
Is there a value of ω that maximizes the amplitude, R, for the particular solution?
To give an example, the example IVP in the text is

u′′ + 0.125u′ + u = cos(ωt), u(0) = 2, u′(0) = 0
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Using our formula for the amplitude of the particular solution, p = 0.125 and q = 1 so

R =
1√

(1− ω2)2 + (0.125)2ω2

We might expect a maximum amplitude at ap-

proximately
√
k/m, which in this case is 1, and

that is true. From the graph, we can determine
that of all possible values of ω, the one that
gives a maximum amplitude to the particular
solution is when ω ≈ 0.996 and the maximum
amplitude is a little over 8.

To find the maximum algebraically, we’ll differentiate R with respect to ω (or whatever
variable we want to optimize), then set the derivative to zero. Before we do that, notice the
following “shortcut”:

R =
1√
f(ω)

= (f(ω))−1/2 ⇒ dR

dω
= −1

2
(f(ω))−3/2f ′(ω) = −1

2

f ′(ω)

(f(ω))3/2

If we set this to zero,

dR

dω
= 0 ⇒ −1

2

f ′(ω)

(f(ω))3/2
= 0 ⇒ f ′(ω) = 0

This simplifies things a lot- Given R = f(ω)−1/2, to find where dR/dω = 0, we simply
need to find where f ′(ω) = 0. Doing that:

f(ω) = (q − ω2)2 + p2ω2 ⇒ df

dω
= 2(q − ω2)(−2ω) + p2 · 2ω = 0

Solving for only the positive ω, we get ω =
√

2q−p2
2

.
As an example, what is the value of ω that gives the maximum amplitude in our previous

example,
u′′ + 0.125u′ + u = cos(ωt)

The value of ω is: √
2(1)− 0.1252

2
≈ 0.996087

Therefore, if we “tune” the external forcing function to have that angular frequency, we will
maximize the amplitude of the particular solution.
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Homework
Replaces Section 3.8

1. Solve the IVP u′′ + ω2
0u = F0 cos(ωt), u(0) = 0 and u′(0) = 0, if ω 6= ω0.

2. Show that the period of motion of an undamped vibration of a mass hanging from a

vertical spring is 2π
√
L/g.

NOTE: We defined L to be the length of the spring stretched from its natural length
to equilibrium.

3. Convert the following to R cos(ω0t− δ).

(a) cos(9t)− sin(9t)

(b) 2 cos(3t) + sin(3t)

(c) −2π cos(πt)− π sin(πt)

(d) 5 sin(t/2)− cos(t/2)

4. Suppose u′′+ 4u = cos(2.8t). This function exhibits beating. (i) Give the frequency of
a beat, and (ii) Give (only) the particular part of the solution.

5. Same question as before, but with u′′ + 9u = cos(3.1t).

6. Same question as before, but with u′′ + u = cos(1.3 t)

7. Find the solution to u′′ + 9u = cos(3t) with zero initial conditions.

8. Find the particular solution: y′′ + 3y′ + 2y = cos(t).

9. Consider u′′ + pu′ + qu = cos(ωt). In the notes at the bottom of p. 4, we got that

ω =

√
2q − p2

2

Thinking of p as damping, if the damping is very very small, then approximately what
value of ω will result in a very large amplitude response?

10. Consider u′′ + u′ + 2u = cos(ωt). In our notes, we said that we could show that the
amplitude of the particular solution is given by

R =
1√

(q − ω2)2 + p2ω2

Find the value of ω that will maximize the amplitude of the particular solution.

11. Suppose we can tune the value of q rather than the value of ω in the differential equation
(where ω = 3):

u′′ + u′ + qu = cos(3t)

Using the R from the last question, find the value of q that will maximize the amplitude
of the particular soluton.
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