
Solutions to Review Questions, Ch 1-3.5

1. Definitions: Be sure to look these up if you’re not sure of any of them.

2. The E&U Theorem states that if p, g are continuous on an open interval I
containing t0, then there exists a unique solution to the IVP: y′ + p(t)y =
g(t), y(t0) = y0. This solution will be valid on I.

3. The E&U Theorem states that if f(t, y) and ∂f
∂y are continuous on an open

rectangle containing containing (t0, y0), then there exists a small interval
about t0, say t0 − h < t0 < t0 + h where there is a unique solution. In
practice, to find the interval, we need to actually solve the differential
equation.

4. True or False, and explain:

(a) In general, this is true. We can draw a direction field for first order
D.E.’s because the slope, y′ depends only on location, f(t, y). For a
second order equation, we can think of y′′ as depending on t, y and
y′.

(b) The solution to y′ = sin(y) cannot be periodic: True. The solution
to autonomous first order equations cannot oscillate because in the
direction field along any horizontal line, all the slopes are the same.

(c) False. In this case, f(t, y) = y1/3, which is continuous everywhere,
but fy = 1

3y−2/3 is NOT continuous at y = 0. Therefore, we can
have multiple solutions (we produced the multiple solutions in class).

(d) If y′ = y2, then −y−1 = t + C1 so that y = −1
t + C2. This is False

(the last step).

y =
−1

t + C1
6= −1

t
+ C2

(e) True. On the interval [0, 1], |t| = t, so that 3t is a multiple of |t|. On
the interval [−1, 1], these functions are not multiples of each other.
We show that they are linearly independent by solving: c13t+c2|t| =
0. For one equation, use t = 1, and for the other, use t = −1, so that
c1 = c2 = 0.

(f) False. In the general case, if W (f, g) = 0 for all t, the functions may
or may not be linearly independent.

(g) This is slightly tricky- If f, g are solutions, then Abel’s Theorem
states that the Wronskian is either identically zero for all (valid)
time, or never zero for all (valid) time. Therefore, the Wronskian
may be zero at a point which is outside the interval on which the
solutions to the D.E. are valid.

(h) It’s easy to see that y = 0 satisfies the differential equation. For the
second,

y′ = − sin(t) + cos(t) y′′ = − cos(t)− sin(t)
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so that y = sin(t) + cos(t) is also a solution. This does not violate
the E&U Theorem- The theorem gives uniqueness for an IVP, not a
general D.E.

(i) True, if p, q are continuous at t0. In that case, we saw that we could
find the fundamental set by solving two IVP’s- y1 solves the D.E.
with y(t0) = 1, y′(t0) = 0. The function y2 solves the D.E. with
y(t0) = 0, y′(t0) = 1.

5. In the general case, since there is a t0 so that the Wronskian is not zero,
and assuming the two functions are differentiable, then the two functions
are linearly independent.

6. Typo in this problem:

y(t) = e−2t (c1 cos(3t) + c2 sin(3t))

This came from a second order linear D.E. with constant coefficients,
where the two roots where:

r = −2 + 3i,−2− 3i

This comes from a characteristic equation:

(r − (−2 + 3i))(r − (−2− 3i)) = (r + 2− 3i)(r + 2 + 3i) =

r2 + 2r + 3ri + 2r + 4 + 6i− 3ri− 6i− 9i2 = r2 + 4r + 9

Thus, the D.E. was: y′′ + 4y′ + 9y = 0

7. Give all solutions:

(a) y′ =
√

te−t − y

This is linear, so put into standard form and use the integrating
factor:

y′ + y = t1/2e−t, I.F. et

(ty)′ = t1/2 ⇒ (ty) =
2
3
t3/2 + C ⇒ y =

2
3
t1/2 +

C

t

(b) (2y−y2)dy
dt = t cos(t) This is separable (also exact). To integrate the

right hand side, use integration by parts in a table:

y2 − 1
3
y3 = cos(t) + t sin(t) + C

(c) y′′ + 4y′ + 5y = 0, y(0) = 1, y′(0) = 0
Solve the characteristic equation, r2 + 4r + 5 = 0 to get r = −2± i.
Then the general solution is:

y(t) = e−2t(c1 cos(t) + c2 sin(t))

Putting in the initial conditions gives a final answer of:

y(t) = e−2t(c1 cos(t) + c2 sin(t))

2



(d) y′ = 1
2y(3− y) This is an autonomous D.E. We note that y = 0 and

y = 3 are equilibrium solutions. If y/neq0 and y/neq3, then:

1
y(3− y)

dy =
1
2

dt

Use partial fractions to integrate the left hand side of the equation
to get:

1
3

ln |y| − 1
3

ln |3− y| = 1
2
t + C

so that (
y

3− y

)
= Ae3/2t ⇒ y =

3
1 + Be−3/2t

(e) y′ = 2 cos(3x), y(0) = 2. Just integrate and solve:

y =
2
3

sin(3x) + C 2 = 0 + C

y(t) =
2
3

sin(3x) + 2

(f) y′ = 2 + 2t2 + y + t2y This is linear,

y′ − (1 + t2)y = 2(1 + t2)

The integrating factor: et+ 1
3 t3 :

(et+ 1
3 t3y)′ = 2(1 + t2)et+ 1

3 t3

Let u = t + 1
3 t3 so that du = (1 + t2) dt, and

et+ 1
3 t3y = 2et+ 1

3 t3 + C y(t) = 2 + Ce−t− 1
3 t3

(g) y′ = xy2, y(0) = y0. This is separable. We also see that y = 0 is a
possible solution, if y0 = 0. Otherwise,

1
y2

dy = x dx ⇒ −1
y

=
1
2
x2 + C

At this stage, C = − 1
y0

, so y(t) =
−2y0

y0x2 − 2
(h) y′ = 1 + y2 is an autonomous D.E.

tan−1(y) = t + C ⇒ y = tan(t + C)

(i) (2xy2 + 2y) + (2x2y + 2x)y′ = 0 This is exact, which we check by
letting M(x, y) = 2xy2 + 2y, and N(x, y) = 2x2y + 2x. Then:

My = 4xy + 2, Nx = 4xy + 2
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Now Ψ(x, y) =
∫

M(x, y) dx = x2y2 + 2xy + h(y), and we check that
Ψy = N(x, y):

Ψy(x, y) = 2x2y + 2x + h′(y)

from which h′(y) = 0, so h(y) = C, which we take to be zero:

Ψ(x, y) = C1 ⇒ x2y2 + 2xy = C1

(j) 9y′′ − 12y′ + 4y = 0, y(0) = 0, y′(0) = −2
In this case, we have one real root, r = 2

3 so that the general solution
is:

y(t) = e
2
3 t (C1 + tC2)

Solving for C1, C2, we get: y(t) = −2e
2
3 t

(k) y′′ + 2y′ + y = 0, y(0) = 1, y′(0) = −1
In this case, we have one real root, r = −1 so that the general solution
is:

y(t) = e−t (C1 + tC2)

Solving for C1, C2, we get: y(t) = e−t

(l) y′′ + 4y = 0, y(0) = 1, y′(0) = 1
In this case, we have two complex roots, r = ±2i so that the general
solution is:

y(t) = (C1 cos(2t) + C2 sin(2t))

Solving for C1, C2, we get: y(t) = cos(t) + 1
2 sin(t)

8. Let y′′+2y′+y = 0, y(0) = 2, y′(0) = −3. Find the solution and determine
if y = 0 for any time t. Same question if y′(0) = −3/2.

The solution to the first IVP is y(t) = e−t(2− t), which is zero for t = 2.
The solution to the second IVP is y(t) = e−t

(
2 + 1

2 t
)

which is zero for
t = −2 (but is not zero in positive time).

9. The general solution is found by:

y(t) =
3− α

5
e−2t +

2 + α

5
e3t

Therefore, α = −2 for y → 0 as t →∞.

10. Determine the largest interval: The idea here is to use the fact that, for
linear second order D.E.s: y′′ + p(t)y′ + q(t)y = g(t), the Existence and
Uniqueness Theorem requires p, q, g to be continuous. Writing the given
ODE in standard form, we get:

y′′ +
3t

t(t− 4)
y′ +

4
t(t− 4)

=
2

t(t− 4)

We will need to avoid t = 0 and t = 4, so that breaks the number line
into three possibilities: (4,∞), (0, 4) or (−∞, 0). Since we have y(3) for
an initial condition, we choose (0, 4).
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11. Solve y′ = ay + b. We looked at several ways of solving this. First, let’s
check a:

• If a = 0, y′ = b, so y(t) = bt + c

• If a 6= 0, the equilibrium is at −b
a , and the solution is Ceat − b

a .
If a < 0, the solutions will tend to equilibrium (the equilibrium is
stable), and if a > 0, the equilibrium is unstable.

12. With
y(t) =

3
1− 4e−3t

it is true that the limit is 3, but we have a vertical asymptote at 1−4e−3t =
0, which is positive. So starting at t = 0, the interval that is valid is
approximately (0, 0.462)

13. For the tank mixing, take (Rate In)-(Rate Out): Let Q(t) be the pounds
of salt at time t. Then

dQ

dt
= 4

gal
min

· 1
2

pound
gal

− 4
gal
min

· Q(t)
100

pounds
gal

, Q(0) = 100

Solve for Q, and get:
Q(t) = 50 + 50e−

1
25 t

The concentration will be 0.7 when Q(t) is 70,

70 = 50 + 50e−
1
25 t

so that t = −25 ln(2/5) ≈ 22.91 minutes.

14. We’ll do this one in class.
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