
Converting a trig sum to a single periodic function

The conversion formula we use in ODEs comes from the trig identity:

cos(A−B) = cos(A) cos(B) + sin(A) sin(B)

If we to determine R, δ so that:

C1 cos(ωt) + C2 sin(ωt) = R cos(ωt− δ)

we can say that:

R cos(ωt− δ) = R (cos(ωt) cos(δ) + sin(ωt) sin(δ))

= (R cos(δ)) cos(ωt) + (R sin(δ)) sin(ωt)

Therefore,
C1 = R cos(δ) and C2 = R sin(δ)

From these equations, we can get formulas for R, δ in terms of C1, C2:
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(recall that the domain of the tangent

needs a restriction so that it is invertible).
We need to be a bit careful in this computation. With C1 = R cos(δ) and

C2 = R sin(δ), we can visualize C1 and C2 as coordinates on the circle of radius
R, where C1 is the “x-”coordinate and C2 is the “y-”coordinate. If x > 0, then
we can use the angle that the calculator provides:

If C1 > 0, then tan−1(C2/C1) = δ.
If x < 0, then we should be in Quadrants II or III of the unit circle, but the

calculator will produce angles in Quadrants I and IV. Therefore:
If C1 < 0, add π to the number provided by the calculator, δ = tan−1(C2/C1)+

π. Some calculators provide a four-quadrant inverse. If yours does this, the com-
puter command will be something like: arctan(y,x) where you have to input
two numbers instead of the fraction.

Examples: Be sure to try these yourself!
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NOTE: If you don’t want to remember to add π in some cases, we can
ALWAYS make C1 > 0. For example, an alternative solution to this
problem would be:
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2. Solve y′′ + y′ + 2y = 0, y(0) = 1
2 , y′(0) = −1, and write the solution as

Aeαt cos(ωt− δ).

The solutions to the characteristic equation, r2 + r + 2 = 0 are
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so that the general solution is:
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Solving for C1, C2, we get:
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