Review Questions: Laplace Transforms

1. Use the definition of the Laplace transform to determine $\mathcal{L}(f)$:

(a)

$$f(t) = \begin{cases} 3, & 0 \le t \le 2\\ 6 - t, & 2 < t \end{cases}$$

(b)

$$f(t) = \left\{ \begin{array}{ll} \mathrm{e}^{-t}, & 0 \leq t \leq 5 \\ -1, & t > 5 \end{array} \right.$$

- 2. Check your previous answer by rewriting f(t) using the step (or Heaviside) function, and use the table to compute the corresponding Laplace transform.
- 3. Determine the Laplace transform:
 - (a) $t^2 e^{-9t}$
 - (b) $e^{2t} t^3 \sin(5t)$
 - (c) $u_5(t)(t-5)^4$
 - (d) $e^{3t} \sin(4t)$
 - (e) $e^t \delta(t-3)$
 - (f) $t^2u_4(t)$
- 4. Find the inverse Laplace transform:

(a)
$$\frac{2s-1}{s^2-4s+6}$$

(b)
$$\frac{s^2 + 16s + 9}{(s+1)(s+3)(s-2)}$$

(c)
$$\frac{7}{(s+3)^3}$$

(d)
$$\frac{e^{-2s}(4s+2)}{(s-1)(s+2)}$$

(e)
$$\frac{3s-2}{2s^2-16s+10}$$

(f)
$$\frac{e^{-2s}}{s^2 + 2s - 2}$$

5. Solve the given initial value problems using Laplace transforms:

(a)
$$y'' - 7y' + 10y = 0$$
, $y(0) = 0$, $y'(0) = -3$

(b)
$$y'' + 6y' + 9y = 0$$
, $y(0) = -3$, $y'(0) = 10$

(c)
$$y'' + 2y' + 2y = t^2 + 4t$$
, $y(0) = 0$, $y'(0) = -1$

(d)
$$y'' + 9y = 10e^{2t}$$
, $y(0) = -1$, $y'(0) = 5$

(e)
$$y'' - 2y' - 3y = u_1(t)$$
, $y(0) = 0$, $y'(0) = -1$

(f)
$$y'' - 4y' + 4y = t^2 e^t$$
, $y(0) = 0$, $y'(0) = 0$

(g)
$$y'' + 4y = \delta(t - \frac{\pi}{2}), y(0) = 0, y'(0) = 1$$

(h)
$$y'' + y = \sum_{k=1}^{\infty} \delta(t - 2k\pi)$$
, with initial conditions both 0.

- 6. Miscellaneous Problems:
 - (a) Evaluate: $\int_0^\infty \sin(3t)\delta(t-\frac{\pi}{2}) dt$
 - (b) Evaluate, using Laplace transforms: $\sin(t)*t$
 - (c) Use the table to find an expression for $\mathcal{L}(ty')$. Use this to solve:

$$y'' + 3ty' - 6y = 1$$
, $y(0) = 0$, $y'(0) = 0$

- 7. Characterize ALL solutions to $y'' + 4y = u_1(t-1)$, y(0) = 1, y'(0) = 1.
- 8. Define $\delta(t-c)$ as a limit of "regular" functions.
- 9. If $y'(t) = \delta(t c)$, what is y(t)?
- 10. Show that $\mathcal{L}(g(t+c)) = e^{cs}(G(s) \int_0^c e^{-st}g(t) dt)$. This might be useful, as mentioned in the notes on inverting $f(t)u_c(t)$.