Practice Sheet: Complex Functions in Differential Equations

- 1. Solve for λ :
 - (a) $\lambda^2 6\lambda + 13 = 0$

$$\lambda = \frac{6 \pm \sqrt{36 - 4(1)(13)}}{2} = \frac{6 \pm \sqrt{-16}}{2} = \frac{6 \pm 4i}{2} = 3 \pm 2i$$

(b) $2\lambda^3 - 8\lambda^2 + 12\lambda - 8 = 0$ (Hint: One solution is $\lambda = 2$). Use long division to get:

$$2\lambda^3 - 8\lambda^2 + 12\lambda - 8 = 2(\lambda - 2)(\lambda^2 - 2\lambda + 2) = 0$$

Use the quadratic formula on the last expression: $\lambda = 2, 1 \pm i$.

(c) $\lambda^3 + \lambda^2 + 4\lambda + 4 = 0$ (Hint: Try to factor in groups)

$$\lambda^{2}(\lambda + 1) + 4(\lambda + 1) = (\lambda + 1)(\lambda^{2} + 4) = 0$$

so that $\lambda = -1, \pm 2i$

(d) $\lambda^4 - 18\lambda^2 + 81 = 0$ In this case, we can use the quadratic formula (or factoring directly) to solve for λ^2 :

$$(\lambda^2 - 9)^2 = 0 \Rightarrow \lambda = 3, 3, -3, -3$$

- 2. Simplify each of the following to the form a + bi:
 - (a) (3+5i)(2-3i) = 21+i
 - (b) $(3-2i)\overline{3-2i} = 13$
 - (c) $|-2+i| = \sqrt{5}$
 - (d) $(2-i)/(1+3i) = -\frac{1}{10} \frac{7}{10}i$
 - (e) $(1+i)^{2+3i} = (1+i)^2(1+i)^{3i} = 2i(1+i)^{3i}$ and

$$(1+i)^{3i} = e^{3i\ln(1+i)} = e^{3i(\sqrt{2}+i\pi/4)} = e^{-3\pi/4+3\sqrt{2}i} = e^{-3\pi/4} \left(\cos(3\sqrt{2}) + i\sin(3\sqrt{2})\right)$$

Put the pieces together, and:

$$-2e^{-3\pi/4}\sin(3\sqrt{2}) + i\cdot 2e^{-3\pi/4}\cos(3\sqrt{2})$$

(f) $\ln\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)$

Note that the angle corresponding to $(-1/2, \sqrt{3}/2)$ is given by $\pi - \pi/3 = 2\pi/3$ (the point is in the second quadrant). Therefore,

$$\ln\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = \ln(1) + \frac{2\pi}{3}i = \frac{2\pi}{3}i$$

- (g) $e^{2+i}e^{-3i} = e^{2-2i} = e^2(\cos(2) i\sin(2))$
- (h) $\ln(-5) = \ln(5) + i\pi$
- (i) $e^{-i\pi} = \cos(-\pi) + i\sin(-\pi) = \cos(\pi) i\sin(\pi) = 1$
- 3. Write each complex number in its polar form:
 - (a) $1-\sqrt{3}i$ $R=\sqrt{1+3}=2$, and θ is in the 4th quadrant. From the $1-2-\sqrt{3}$ triangle, we see that $\theta=-\frac{\pi}{3}$.

$$1 - \sqrt{3}i = 2e^{-i\pi/3}$$
 or $2e^{i\,5\pi/3}$

(b) 3 The positive real numbers are already in polar form! $R = 3, \theta = 0$.

(c) -5-3i (Use a calculator for θ)

Using the tangent, $\tan^{-1}(3/5) \approx 0.5404$. Note that this angle is in the first quadrant rather than the fourth. Therefore, $\theta = \pi + 0.5404 \approx 3.682$ $R = \sqrt{25+9} = \sqrt{34}$, so

$$-5 - 3i \approx \sqrt{34}e^{3.682i}$$

(d)
$$-i = e^{3\pi/2} i$$
 or $e^{-\pi/2} i$

4. Show, using Euler's Formula and treating i as a constant, that:

$$\frac{d}{dt} \left(e^{(\alpha + \beta i)t} \right) = (\alpha + \beta i) e^{(\alpha + \beta i)t}$$

Doing this the long way and using the product rule:

$$\frac{d}{dt} \left(e^{\alpha t} \left(\cos(\beta t) + i \sin(\beta t) \right) \right) =$$

$$\alpha e^{\alpha t} \left(\cos(\beta t) + i \sin(\beta t) \right) + e^{\alpha t} \left(-\beta \sin(\beta t) + i\beta \cos(\beta t) \right) =$$

$$\alpha e^{\alpha t} \left(\cos(\beta t) + i \sin(\beta t) \right) + \beta i e^{\alpha t} \left(\cos(\beta t) + i \sin(\beta t) \right) = (\alpha + \beta i) e^{\alpha t} \left(\cos(\beta t) + i \sin(\beta t) \right)$$

which gives us our result.

5. Verify our in-class remarks that, if $y = C_1 e^{(\alpha+\beta i)t} + C_2 e^{(\alpha-\beta i)t}$, and y(0) = 1, $y'(0) = \alpha$, then $y = e^{\alpha t} \cos(\beta t)$. We get the two equations:

$$y(0) = 1$$
 \Rightarrow $1 = C_1 + C_2$ $1 - C_1 = C_2$

and

$$y'(0) = \alpha$$
 \Rightarrow $\alpha = (\alpha + \beta i)C_1 + (\alpha - \beta i)C_2$

Putting these together,

$$\alpha = (\alpha + \beta i)C_1 + (\alpha - \beta i)(1 - C_1) \qquad \Rightarrow \qquad \alpha = (\alpha + \beta i)C_1 + \alpha - \beta i - (\alpha - \beta i)C_1 \qquad \Rightarrow$$
$$\beta i = (\alpha + \beta i - \alpha + \beta i)C_1 \qquad C_1 = \frac{1}{2}, C_2 = \frac{1}{2}$$

Now,

$$\frac{1}{2}e^{(\alpha+\beta i)t} + \frac{1}{2}e^{(\alpha-\beta i)t} = \frac{1}{2}e^{\alpha t}\left(\cos(\beta t) + i\sin(\beta t) + \cos(\beta t) - i\sin(\beta t)\right) = e^{\alpha t}\cos(\beta t)$$

6. Similarly, verify that, if $y = C_1 e^{(\alpha + \beta i)t} + C_2 e^{(\alpha - \beta i)t}$, and y(0) = 0, $y'(0) = \beta$, then $y = e^{\alpha t} \sin(\beta t)$. We get the two equations:

$$y(0) = 0 \qquad \Rightarrow \qquad 0 = C_1 + C_2 \qquad -C_1 = C_2$$

and

$$y'(0) = \beta$$
 \Rightarrow $\beta = (\alpha + \beta i)C_1 + (\alpha - \beta i)C_2$

Putting these together,

$$\beta = (\alpha + \beta i)C_1 + (\alpha - \beta i)(-C_1) \qquad \Rightarrow \qquad \beta = (\alpha + \beta i - \alpha + \beta i)C_1 \qquad \Rightarrow C_1 = \frac{1}{2i} = -\frac{i}{2}$$

Now,

$$\frac{-i}{2}e^{(\alpha+\beta i)t} + \frac{i}{2}e^{(\alpha-\beta i)t} = \frac{i}{2}e^{\alpha t}\left(-e^{\beta it} + e^{-\beta it}\right) = \frac{i}{2}e^{\alpha t}\left(-\cos(\beta t) - i\sin(\beta t) + i\cos(\beta t) - i\sin(\beta t)\right) = e^{\alpha t}\sin(\beta t)$$