Math 244, Spring 2005: Exam 1 Review

. Create a model of a population bounded by an environmental equilibrium. Your as-
sumptions are that the differential equation is autonomous, that y = 0 is an unstable
equilibrium and y = A is a stable equilibrium. (Hint: Draw a possible graph of
y' = f(y) as a phase plot, then get a possible equation for your graph). Once you've
obtained your differential equation, solve it. Does your formula for the solution behave
as it should as t — oco? Explain.

. Suppose you have a tank of brine containing 300 gallons of water with a concentration
of 1/6 pounds of salt per gallon. There is brine pouring into the tank at a rate of 3
gallons per minute, and it contains 2 pounds of salt per gallon. The well-mixed solution
leaves at the same rate, 3 gallons per minute. Write the initial value problem for the
amount of salt in the tank at time ¢, and solve it. What is the concentration of salt in
the tank as ¢t — co? (and does that make sense?).

. Same as the previous problem, but suppose that the brine is leaving the tank at 2
gallons per minute. Write and solve the new initial value problem. If the tank could
hold an infinite amount of brine, is there a limit to the concentration of salt in the
tank?

. Attached is a set of four direction fields plotted from Maple. Classify each as coming
from a differential equation that is of the form: (a) v’ = f(y), (b) ¥ = f(z), (c) A
D.E. with a transient solution. (d) None of these.

. Classify each D.E. by its type- (i) Linear, (ii) Separable, (iii) Exact, (iv) Homogeneous,
(v) Bernoulli. (NOTE: There may be more than one answer for each). Do not solve.
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6. True or False, and give a short explanation. If a statement is sometimes true and
sometimes false, then it is false- but give a reason.

(a) In the direction field for ' = f(z,y), two solution curves cannot intersect.

(b) All separable equations are also exact.

(¢) A solution to ¢y’ = sin(y) is probably periodic.

(d) The particular solution to ¢’ + y = 3sin(t) — 1 will probably be of the form:

y = Asin(t) + Bcos(t) + C
(e) The homogeneous part of the solution to ¢ +y = 3sin(t) + C is Ae™*

f) If our differential equation is: 3/ +—2—y = 4, then we can predict that the solution
vr—3
will be valid on the entire interval x > 3.

(g) If our differential equation is: " + \/%T?)yQ = 4, then we can predict that the
interval on which our solution is valid will be z > 3.

7. Find values of k for which the IVP: 2y’ — 4y = 0, y(0) = k has (i) No solution, (ii) An
infinite number of solutions. Does this violate the Existence and Uniqueness Theorem
(explain)?

8. Find values of k so that y = e* is a solution to y" + ¢’ — 2y = 0.
9. Find values of n so that y = 2™ is a solution to: x%y” — Txy’ + 15y = 0.

10. Find A, B and C so that y = Asin(t) + B cos(t) is a particular solution to ¢’ +y =
3sin(t) — 1 (Also see Problem 6(c))

11. Given Problem 6(c, d) and your previous answer, what is the full general solution to
y' +y = 3sin(t) — 17 Verify this by solving it directly.

d
12. Solve, and give the interval I on which the solution is valid: d—y =+/1—192
x

13. Solve:

dP
(a) - +2tP =P+t —2

d
(b) CHANGE TO: (2 + 1)% + (2 +2)y = 2ze™"

(c) (y*+1)dx — (ysec*(z))dy =0

)
)
(d) (6z+1)y*% + 322 4+ 2y° = 0
)
)y

e) 2’y =y —x3

-1 ifo<z <1

f f(x), y(0) =1, where f(z) = { 1 ifz>1
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ly =3z + 2, y(0) = yo, what is the largest interval on which the solution
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