
REVIEW QUESTIONS, EXAM 2, Math 244

1. True or False, and explain:

(a) Let f and g be differentiable for every x. If the W (f, g) = 0 for every x, f, g must be linearly
dependent.
False. We did say that if W (f, g) 6= 0 at some x, the functions are linearly dependent on any
interval containing that point. If the two functions are solutions to a linear homogeneous differ-
ential equation, and the Wronskian is zero on the interval where the solution is defined, then the
statement would be true.

(b) We cannot draw a direction field for a second order differential equation.
True. The direction field depended on y′ depending on t, y. In the second order case, y′′ depends
on t, y and y′.

(c) Given that y1 is part of the homogeneous solution, we can find both y2 and yp (at the same time)
to ay′′ + by′ + cy = f(x).
True. We did this on some homework problems from Section 4.2.

(d) We can always compute a fundamental set of solutions to ay′′ + by′ + cy = 0.
True. Solve two initial value problems so that the Wronskian there is nonzero. A nice choice:
Let y1 solve the DE with initial conditions y(0) = 1, y′(0) = 0 and y2 solve the DE with initial
conditions y(0) = 0, y′(0) = 1 (therefore, the Wronskian at 0 is 1).

(e) The Cauchy-Euler equation, ax2y′′ + bxy′ + cy = 0 can be written as aŷ′′ + bŷ′ + cŷ = 0 after an
appropriate substitution (if True, write the substitution).
True. Let x = et, so t = ln(x). Furthermore, we make the substitutions:

dy

dx
=

dy

dt

dt

dx
=

1
x
· dy

dt
=

1
x

ẏ

and

d2y

dx2
=

d

dx

−1
x2

dy

dt
+

1
x

d
(

dy
dt

)
dt

dt

dx

 =
1
x2

(ÿ − ẏ)

(f) In using the Method of Undetermined Coefficients, is the ansatz yp = (Ax2 +Bx+C)(D sin(x)+
E cos(x)) equivalent to

yp = (Ax2 + Bx + C) sin(x) + (Dx2 + Ex + F ) cos(x)

This is false. We want to use: yp = (Ax2 + Bx + C) sin(x) + (Dx2 + Ex + F ) cos(x), which gives
a different quadratic function for each of the sine and cosine function.

2. Suppose W (f, g) = t2 − 4. What can we conclude about f, g?

We can say that f, g are linearly independent functions. They could be linearly independent solutions
on the interval t < −2, −2 < t < 2 or t > 2.

3. Without using the Wronskian, determine whether the given set of functions is linearly independent on
the indicated interval:

(a) ln(x), ln(x2), (0,∞)
These are linearly dependent, since ln(x2) = 2 ln(x), which is a constant multiple of the first
function.
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(b) x, x + 1, (−∞,∞)
These are linearly independent, since they are not constant multiples of each other. In fact, the
functions 1 and x are linearly independent as well.

(c) xex+1, (4x− 5)ex, xex, (−∞,∞).
These are linearly dependent, since xex+1 = x (exe) is a constant multiple of the third function.
(Note: If you have a list of functions, and two of them are linearly dependent, then the whole list
is linearly dependent).

4. Finish the definition: Functions f, g are said to be Linearly Independent on an interval I if: the only
solution to c1f + c2g = 0 is the zero solution, c1 = c2 = 0.

5. One way to obtain a fundamental set of solutions was to solve two initial value problems. How did
we show that y1 = eαx cos(βx), y2 = eαx sin(βx) formed a fundamental set when m = α± βi was the
solution to the characteristic equation?
Given that yh = C1e(α+βi)t + C2e(α−βi)t, we were given two sets of initial conditions so that the
Wronskian was non-zero, and y1 = eαx cos(βx) and y2 = eαx sin(βx). (You don’t have to remember
the initial conditions).

6. Suppose m1 = 3,m2 = −5,m3 = 1 are the roots of multiplicity one, two and three respectively, of the
characteristic equation. Write the general solution of the corresponding homogeneous linear DE if it
is (a) an equation with constant coefficients, (b) a Cauchy-Euler equation.

• For part (a), yh = C1e3t + e−5t (C2 + C3t) + et
(
C4 + C5t + C6t

2
)

• For part (b), yh = C1x
3 + x−5 (C2 + C3 ln(x)) + x

(
C4 + C5 ln(x) + C6(ln(x))2

)
7. Write down the general solution of the given differential equation using Method of Undetermined

Coefficients (There will be two cases, ω = α and ω 6= α). Do not solve for the coefficients: (a)
y′′ + ω2y = sin(αx), (b) y′′ − ω2y = eαx.

• The roots to the characteristic equation are m = ±ωi.
– If α 6= ω, y = C1 cos(ωx) + C2 sin(ωx) + A sin(αx) + B cos(αx).
– If α = ω, y = C1 sin(ωx) + C2 cos(ωx) + x(A sin(ωx) + B cos(ωx)).

• The roots to the characteristic equation are m = ±ω.
– If α 6= ω, y = C1eωx + C2e−ωx + Aeαx.
– If α = ω, y = C1eωx + C2e−ωx + Axeωx.

8. Find a linear second order differential equation with constant coefficients for which y1 = 1 and y2 = e−x

are solutions to the homogeneous equation, and yp = 1
2x2 − x is a particular solution.

From what is given, the characteristic equation is m(m−1) = 0, which corresponds to the homogeneous
equation y′′ + y′ = 0. If we want x2 − x to be the particular solution, substitute it for y:

y′′p + y′p = 1 + (x− 1) = x

so that our final answer is: y′′ + y′ = x.

9. Write the solution in terms of α, then determine the value(s) of α so that y(t) → 0 as t →∞:

y′′ − y′ − 6y = 0, y(0) = 1, y′(0) = α

The homogeneous solution is: yh = C1e3t + C2e−2t. We get the following equations for the initial
conditions, which we could solve by substitution, eliminating one variable, or by Cramer’s Rule:

C1 + C2 = 1
3C1 − 2C2 = α

⇒ C1 =
2 + α

5
, C2 =

3− α

5

For y(t) → 0, C1 = 0. Therefore, α = −2.
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10. Determine the longest interval for which the IVP is certain to have a unique solution. Do not attempt
to find the solution:

t(t− 4)y′′ + 3ty′ + 4y = 2, y(3) = 0, y′(3) = −1

First, put the D.E. in standard form:

y′′ +
3

t− 4
y′ +

4
t(t− 4)

y =
2

t(t− 4)

which breaks the solution into one of the following intervals: (i) t < 0, (ii) 0 < t < 4, or (iii) t > 4.
Since the initial condition is set at t = 3, the longest interval is 0 < t < 4.

11. Let L(y) = y′′ − 6y′ + 5y. Suppose that yp1 = 3e2x and yp2 = x2 + 3x are particular solutions to
L(y) = −9e2x and L(y) = 5x2 + 3x− 16. What is the particular solution to

y′′ − 6y′ + 5y = −10x2 − 6x + 32 + e2x

Use the fact that this is a linear operator. Therefore, if

L(3e3x) = −9e2x ⇒ −1
9
L(3e3x) = e2x ⇒ L

(
−1

3
e3x

)
= e2x

and

L(x2+3x) = 5x2+3x−16 ⇒ −2L(x2+3x) = −10x2−6x+32 ⇒ L(−2x2−6x) = −10x2−6x+32

Therefore, yp = − 1
3e3x − 2x2 − 6x.

12. Below you are given a differential equation and one of the homogeneous solutions. Use reduction of
order to either find the other homogeneous solution, or both the homogeneous and particular solutions:

(a) (1− x2)y′′ + 2xy′ = 0, y1 = 1
Using reduction of order,

y2 = u1y1

y′2 = u′1y1 + u1y
′
1

y′′2 = u′′1y1 + 2u1y
′
1 + u1y

′′
1

⇒ y1 = 1 ⇒
y2 = u1

y′2 = u′1
y′′2 = u′′1

⇒ w′ =
−2x

1− x2
w

so that w = 1− x2, and u1 = x− 1
3x3, which is also y2, since y1 = 1.

(b) y′′ − 3y′ + 2y = 5e3x, y1 = ex Using reduction of order,

2y2 = 2u1y1

−3y′2 = −3u′1y1 − 3u1y
′
1

y′′2 = u′′1y1 + 2u1y
′
1 + u1y

′′
1

⇒ u′′2y1 + u′1(2y1 − 3y′1) = 5e3x ⇒ w′ − w = 5e2x

Now, (
e−xw

)′ = 5ex ⇒ w = 5e2x + Cex

so that u = 5
2e2x + Cex, and y2 = 5

2e3x + Ce2x. Note that this combines the homogeneous part
of the solution and the particular part of the solution.

(c) 4x2y′′ + y = 0, y1 = x1/2 ln(x)
Note that y′1 = 1√

x

(
1
2 ln(x) + 1

)
. Setting y2 = u1y1, we get:

4x2y′′2 + y2 = 4x2u′′1y1 + 8x2u′1y
′
1 = 0
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Substituting, and setting w = u′1, we get:

w′ = −4x3/2(ln(x) + 2)
4x5/2 ln(x)

w ⇒ 1
w

dw = −
(

1
x

+
2

x ln(x)

)
dx

(use integration by parts for that second integral) so that

ln(w) = − ln(x)− 2 ln(ln(x)) ⇒ ln(w) = ln(x−1) + ln((ln(x))−2) ⇒ w = x−1(ln(x))−2

Integrate by parts again to get u = − 1
ln(x) , so that y2 = − 1

ln(x) ·
√

x ln(x) =
√

x.

13. Referring to the previous problem, solve (a) by using a suitable substitution to make it first order,
solve (b) by the Method of Undetermined Coefficents, and (c) by seeing it is a Cauchy-Euler equation.

These will go a lot faster than Reduction of Order, but it was good for practice!

• Let w = y′, so w′ = − 2x

1− x2
w (which is what we had before). Now be sure and include the

arbitrary constants so that we get all solutions:

ln(w) = ln(1− x2) + C0 ⇒ w = C1(1− x2) ⇒ y′ = C1(1− x2) ⇒ y = C1(x−
1
3
x3) + C2

• The homogeneous part is yh = C1e2x + C2ex. We will guess that yp = Ae3x, giving us A = 5
2 .

• Let y = xm, and substitute into 4x2y′′ + y = 0, giving us

4m(m− 1) + 1 = 0 ⇒ 4m2 − 4m + 1 = 0 ⇒ m =
1
2
,
1
2

(A repeated root). Therefore, yh = C1x
1/2 + C2x

1/2 ln(x).

14. Solve. If given an IVP, solve for all unknown coefficients.

(a) y′′ + 2y′ + y = 0, y(0) = 1, y′(0) = 0 y(x) = e−x(1 + x)

(b) y′′ − y = x + sin(x), y(0) = 2, y′(0) = −3
You should get that yh = C1e−x + C2ex, and break the particular solutions up: yp1 = Ax + B
and yp2 = A sin(x) + B cos(x). Solving, we get

y(x) =
1
4
ex +

7
4
e−x − x− 1

2
sin(x)

(c) y′′ − y = 2ex

ex+e−x

We might first simplify the right-hand-side (this would not be obvious from the start, but does
make our simplifications easier later on...)

ex

ex + e−x
· ex

ex
=

e2x

1 + e2x

If y1 = ex, y2 = e−x, then the Wronskian is −2, and

u′1 =
−e−x e2x

1+e2x

−2
=

ex

1 + (ex)2

To integrate, do a u, du substitution with u = ex so that u1 = tan−1(ex) For the second function,
we get (after some simplification):

u′2 = − e3x

1 + e2x
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Making the same substitution as before, u = ex,

u2 = −
∫

u2

1 + u2
du = −

∫
1− 1

1 + u2
du

so that u2 = −ex + tan−1(ex). Put it all together for your final answer.

(d) y′′ − 2y′ + y = x2ex

You should get yh = ex(C1 + C2x), and have an initial guess that yp = (Ax2 + Bx + C)ex.
Comparing this to the homogeneous equation, we see that the final form for yp is:

yp = x2(Ax2 + Bx + C)ex = (Ax4 + Bx3 + Cx2)ex

Things simplify quite a bit- We get A = 1
12 , and B = C = 0 giving the final answer as:

ex(C1 + C2x) +
1
12

x4ex

(e) x2y′′ − xy′ + y = x3

The homogeneous part is yh = x(C1 + C2 ln(x)). Put these into variation of parameters formula
to get a particular solution of 1

4x3.

(f) x3y′′′ − 6y = 0
In this case, the characteristic equation is m3 − 3m2 + 2m − 6 = 0. Note that this factors as:
m2(m− 3) + 2(m− 3) = 0 or (m− 3)(m2 + 2) = 0. Therefore, m = 3,±

√
2 i, so our homogeneous

solution is:
C1x

3 + C2 cos(ln(x
√

2)) + C3 sin(ln(x
√

2))

(g) 2x2y′′ + 5xy′ + y = x2 − x

The homogeneous solution is C1x
−1 + C2x

−1/2. You should find that the particular solution is
1
30x(2x− 5).

(h) Solve by Variation of Parameters: 2y′′ + y′ − y = x + 1
The homogeneous part of the solution is C1e1/2x + C2e−x. You should find that the particular
part of the solution is −x− 2.

15. Be sure you can do the homework from Section 4.8!
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