
Solving ay′′ + by′ + cy = 0

To solve ay′′ + by′ + cy = 0, we use the ansatz y = eλt. Substitution of the ansatz into the
ODE,

eλt
(
aλ2 + bλ + c

)
= 0

The equation aλ2 + bλ + c = 0 is the characteristic equation associated with the DE. Its
solutions are from the quadratic formula,

λ1,2 =
−b±

√
b2 − 4ac

2a

A Summary of the Cases (details afterward):

1. If the roots are real, distinct: y(t) = C1e
λ1t + C2e

λ2t.

2. If we get a double root (in that case, b2 − 4ac = 0, and λ = −b/2a, then we need a
second linearly independent solution. We will show below that the general solution is:

y = C1e
λt + C2te

λt = eλt (C1 + tC2)

3. If we get complex roots, b2 − 4ac < 0, let λ1,2 = α± βi, then:

y = eαt (C1 cos(βt) + C2 sin(βt))

Details: Case 2 In this case, b2 − 4ac = 0, and we had only one real root, λ = −b/2a. We
can obtain the second solution using variation of parameters (Section 4.2), and assume that
the second solution is of the form y2 = u(t)eλt. Substituting y2 into the ODE gives:

u′′
(
aeλt

)
+ u′

(
(b + 2aλ)eλt

)
= 0

Divide by aeλt. Substitute λ = −b/2a to simplify:

u′′ + u′
(

b

a
+ 2λ

)
= 0 ⇒ u′′ + u′

(
b

a
+ 2 · −b

2a

)
= 0 ⇒ u′′ = 0

Now take u′ = 1 (we don’t need a generic antiderivative- Choose one). And u = t. Therefore,

y2(t) = u(t)eλt = teλt

Details: Case 2 (Also see the Practice Sheet)
If the roots are complex, b2 − 4ac < 0, we can write

λ1,2 =
−b±

√
b2 − 4ac

2a
=
−b

2a
±
√

4ac− b2

2a
i = α± βi

From the Practice Sheet,

e(α±βi)t = eαte±βt i = eαt (cos(±βt) + i sin(±βt)) = eαt (cos(βt)± i sin(βt))
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This last equality is because the cosine is an even function, cos(−w) = cos(w), and sine is
an odd function, sin(−w) = − sin(w).
If we let

y1 = eαt (cos(βt) + i sin(βt)) , y2 = eαt (cos(βt)− i sin(βt))

We know that we can find a fundamental set of solutions by taking the first function as the
solution to:

ay′′ + by′ + cy = 0, y(0) = 1, y′(0) = α

and the second as the solution to:

ay′′ + by′ + cy = 0, y(0) = 0, y′(0) = β

(Note that the Wronskian at t = 0 is β 6= 0, so that y1, y2 will form a fundamental set).
Let y = C1y1 + C2y2. In the practice problems, we showed that

y′1(0) = α + iβ, y′2(0) = α− iβ

For the case that y(0) = 1 and y′(0) = 0, we get the two equations:

C1 + C2 = 1, (α + iβ)C1 + (α− iβ)C2 = α

and the solutions are: C1 = C2 = 1
2
, and y = eαt cos(βt).

For the case that y(0) = 0 and y′(0) = 1, we get the two equations:

C1 + C2 = 0, (α + iβ)C1 + (α− iβ)C2 = β

and the solutions are: C1 = − i
2
, C2 = i

2
, and C1y1 + c2y2 simplifies to eαt sin(βt). which is a

multiple of just eαt sin(βt).

Some Comments on Roots of Polynomials
The problem: any

n + . . . + a1y
′ + a0y = 0 will always reduce to solving the nth degree

polynomial:
anλ

n + an−1λn−1 + . . . + a1λ + a0 = 0

Notes:

• If pn(x) has a root at x = a, then (x− a) is a factor. We could perform long division
(or synthetic division) to factor this term out.

• If the coefficients of pn(x) are real, then the polynomial can be factored into a product
of linear and irreducible quadratic terms. The roots of the quadratics will always come
in complex conjugate pairs.

• If a real root a is repeated k times, the independent solutions will be:

eat, teat, . . . , tk−1ekt

This will also work in the complex case- Multiply one fundamental set by t to get the
second. For example, if the characteristic equation is: (λ2 + 1)2 = 0, a fundamental
set would be:

sin(t), cos(t), t sin(t), t cos(t)

• In general, it is difficult to find the roots of an nth degree polynomial. There are
formulas when n = 2, and n = 3. In Abstract Algebra, it is shown that there is no
(closed form) formula if n ≥ 5. In Maple, use the roots command.
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