Solving
$$ay'' + by' + cy = 0$$

To solve ay'' + by' + cy = 0, we use the ansatz $y = e^{\lambda t}$. Substitution of the ansatz into the ODE,

$$e^{\lambda t} \left(a\lambda^2 + b\lambda + c \right) = 0$$

The equation $a\lambda^2 + b\lambda + c = 0$ is the characteristic equation associated with the DE. Its solutions are from the quadratic formula,

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

A Summary of the Cases (details afterward):

- 1. If the roots are real, distinct: $y(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$.
- 2. If we get a double root (in that case, $b^2 4ac = 0$, and $\lambda = -b/2a$, then we need a second linearly independent solution. We will show below that the general solution is:

$$y = C_1 e^{\lambda t} + C_2 t e^{\lambda t} = e^{\lambda t} (C_1 + t C_2)$$

3. If we get complex roots, $b^2 - 4ac < 0$, let $\lambda_{1,2} = \alpha \pm \beta i$, then:

$$y = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$$

Details: Case 2 In this case, $b^2 - 4ac = 0$, and we had only one real root, $\lambda = -b/2a$. We can obtain the second solution using variation of parameters (Section 4.2), and assume that the second solution is of the form $y_2 = u(t)e^{\lambda t}$. Substituting y_2 into the ODE gives:

$$u''\left(ae^{\lambda t}\right) + u'\left((b + 2a\lambda)e^{\lambda t}\right) = 0$$

Divide by $ae^{\lambda t}$. Substitute $\lambda = -b/2a$ to simplify:

$$u'' + u'\left(\frac{b}{a} + 2\lambda\right) = 0 \qquad \Rightarrow u'' + u'\left(\frac{b}{a} + 2 \cdot \frac{-b}{2a}\right) = 0 \qquad \Rightarrow u'' = 0$$

Now take u'=1 (we don't need a generic antiderivative- Choose one). And u=t. Therefore,

$$y_2(t) = u(t)e^{\lambda t} = te^{\lambda t}$$

Details: Case 2 (Also see the Practice Sheet)

If the roots are complex, $b^2 - 4ac < 0$, we can write

$$\lambda_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a} i = \alpha \pm \beta i$$

From the Practice Sheet,

$$e^{(\alpha \pm \beta i)t} = e^{\alpha t}e^{\pm \beta t i} = e^{\alpha t} \left(\cos(\pm \beta t) + i\sin(\pm \beta t)\right) = e^{\alpha t} \left(\cos(\beta t) \pm i\sin(\beta t)\right)$$

This last equality is because the cosine is an even function, $\cos(-w) = \cos(w)$, and sine is an odd function, $\sin(-w) = -\sin(w)$.

If we let

$$y_1 = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t)), \quad y_2 = e^{\alpha t} (\cos(\beta t) - i \sin(\beta t))$$

We know that we can find a fundamental set of solutions by taking the first function as the solution to:

$$ay'' + by' + cy = 0$$
, $y(0) = 1, y'(0) = \alpha$

and the second as the solution to:

$$ay'' + by' + cy = 0$$
, $y(0) = 0$, $y'(0) = \beta$

(Note that the Wronskian at t = 0 is $\beta \neq 0$, so that y_1, y_2 will form a fundamental set). Let $y = C_1y_1 + C_2y_2$. In the practice problems, we showed that

$$y_1'(0) = \alpha + i\beta, \qquad y_2'(0) = \alpha - i\beta$$

For the case that y(0) = 1 and y'(0) = 0, we get the two equations:

$$C_1 + C_2 = 1$$
, $(\alpha + i\beta)C_1 + (\alpha - i\beta)C_2 = \alpha$

and the solutions are: $C_1 = C_2 = \frac{1}{2}$, and $y = e^{\alpha t} \cos(\beta t)$.

For the case that y(0) = 0 and y'(0) = 1, we get the two equations:

$$C_1 + C_2 = 0$$
, $(\alpha + i\beta)C_1 + (\alpha - i\beta)C_2 = \beta$

and the solutions are: $C_1 = -\frac{i}{2}$, $C_2 = \frac{i}{2}$, and $C_1y_1 + c_2y_2$ simplifies to $e^{\alpha t}\sin(\beta t)$. which is a multiple of just $e^{\alpha t}\sin(\beta t)$.

Some Comments on Roots of Polynomials

The problem: $a_n y^n + \ldots + a_1 y' + a_0 y = 0$ will always reduce to solving the n^{th} degree polynomial:

$$a_n \lambda^n + a_{n-1} \lambda_{n-1} + \ldots + a_1 \lambda + a_0 = 0$$

Notes:

- If $p_n(x)$ has a root at x = a, then (x a) is a factor. We could perform long division (or synthetic division) to factor this term out.
- If the coefficients of $p_n(x)$ are real, then the polynomial can be factored into a product of linear and irreducible quadratic terms. The roots of the quadratics will always come in complex conjugate pairs.
- If a real root a is repeated k times, the independent solutions will be:

$$e^{at}$$
, te^{at} , ..., $t^{k-1}e^{kt}$

This will also work in the complex case- Multiply one fundamental set by t to get the second. For example, if the characteristic equation is: $(\lambda^2 + 1)^2 = 0$, a fundamental set would be:

$$\sin(t), \cos(t), t\sin(t), t\cos(t)$$

• In general, it is difficult to find the roots of an n^{th} degree polynomial. There are formulas when n=2, and n=3. In Abstract Algebra, it is shown that there is no (closed form) formula if $n \geq 5$. In Maple, use the roots command.