Linear Systems Homework Solutions

Each list of 4 numbers are the 4 entries, a, b, c, d of a matrix

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

Find the general solution to $\mathbf{x}' = A\mathbf{x}$ and classify the origin using our chart.

1. -8, 18, -3, 7

SOLUTION: Tr(A) = -1, det(A) = -2, $\Delta = 9$. From the chart, the origin is a SADDLE. The eigenvalues are 1, -2, and the eigenvectors are $\langle 2, 1 \rangle$ and $\langle 3, 1 \rangle$. he solution is:

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^t + c_2 \begin{bmatrix} 3 \\ 1 \end{bmatrix} e^{-2t} = \begin{bmatrix} 2c_1 e^t + 3c_2 e^{-2t} \\ c_1 e^t + c_2 e^{-2t} \end{bmatrix}$$

2. 1, 1, -1, 1

SOLUTION: Tr(A) = 2, $\det(A) = 2$, $\Delta = -4$. From the chart, the origin is a SPIRAL SOURCE. The eigenvalue we'll work with is 1+i and the eigenvector is from $(A - \lambda I)\mathbf{v} = \mathbf{0}$:

$$\begin{bmatrix} -i & 1 \\ -1 & -i \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow v_2 = iv_1$$

so an eigenvector is $\langle 1, -i \rangle$. We now compute $\mathbf{v}e^{\lambda t}$ in preparation for the solution:

$$\mathbf{v}e^{\lambda t} = \begin{bmatrix} 1\\ -i \end{bmatrix} e^t e^{it} = e^t \begin{bmatrix} \cos(t) + i\sin(t)\\ \sin(t) - i\cos(t) \end{bmatrix}$$

The solution is:

$$\mathbf{x}(t) = c_1 \operatorname{Re}(\mathbf{v}e^{\lambda t}) + c_2 \operatorname{Im}(\mathbf{v}e^{\lambda t}) = e^t \left(c_1 \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix} + c_2 \begin{bmatrix} \sin(t) \\ \cos(t) \end{bmatrix} \right)$$

3. 0, 1, -1, 2

SOLUTION: Tr(A) = 2, $\det(A) = 1$, $\Delta = 0$. From the chart, the origin is a DE-GENERATE SOURCE with eigenvalue 1, eigenvector $\langle 1, 1 \rangle$. The second eigenvector is found by: $(A - \lambda I)\mathbf{q} = \mathbf{v}$:

$$\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow -q_1 + q_2 = 1 \Rightarrow \mathbf{q} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

The solution is:

$$\mathbf{x}(t) = c_1 \mathbf{v} e^{\lambda t} + c_2 e^{\lambda t} (t \mathbf{v} + \mathbf{q}) = e^t \left(c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} t \\ t+1 \end{bmatrix} \right)$$

4. 1, 1, -1, 3

SOLUTION: Tr(A) = 4, $\det(A) = 4$, $\Delta = 0$. From the chart, the origin is a DE-GENERATE SOURCE with eigenvalue 2, eigenvector $\langle 1, 1 \rangle$. The second eigenvector is found by: $(A - \lambda I)\mathbf{q} = \mathbf{v}$:

$$\begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \Rightarrow -q_1 + q_2 = 1 \Rightarrow \mathbf{q} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

The solution is:

$$\mathbf{x}(t) = c_1 \mathbf{v} e^{\lambda t} + c_2 e^{\lambda t} \left(t \mathbf{v} + \mathbf{q} \right) = e^{2t} \left(c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} t \\ t+1 \end{bmatrix} \right)$$

It's a coincidence that the eigenvectors in problems 3 and 4 are the same...

5. -5, 1, -6, 0

SOLUTION: Tr(A) = -5, det(A) = 6, $\Delta = 1$. From the chart, the origin is a SINK. The eigenvalues are -2, -3, and the eigenvectors are $\langle 1, 3 \rangle$ and $\langle 1, 2 \rangle$. The solution is:

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 1 \\ 3 \end{bmatrix} e^{-3t} = \begin{bmatrix} c_1 e^{-2t} + c_2 e^{-3t} \\ 2c_1 e^{-2t} + 3c_2 e^{-3t} \end{bmatrix}$$

6. -1, 1, -5, 1

SOLUTION: Tr(A) = 0, det(A) = 4, $\Delta = -16$. From the chart, the origin is a CENTER. The eigenvalue we'll work with is 2i and the eigenvector is:

$$\begin{bmatrix} -1-2i & 1 \\ -5 & 1-2i \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow v_2 = (1+2i)v_1$$

so an eigenvector is $\langle 1, 1+2i \rangle$. We now compute $\mathbf{v}e^{\lambda t}$ in preparation for the solution:

$$\mathbf{v}e^{\lambda t} = \begin{bmatrix} 1\\1+2i \end{bmatrix} e^{2it} = \begin{bmatrix} \cos(2t) + i\sin(2t)\\(\cos(2t) - 2\sin(2t)) + i(\sin(2t) + 2\cos(2t)) \end{bmatrix}$$

The solution is:

$$\mathbf{x}(t) = c_1 \begin{bmatrix} \cos(2t) \\ \cos(2t) - 2\sin(2t) \end{bmatrix} + c_2 \begin{bmatrix} \sin(2t) \\ \sin(2t) + 2\cos(2t) \end{bmatrix}$$

7. 4, -2, 1, 1

SOLUTION: Tr(A) = 5, det(A) = 6, $\Delta = 1$. From the chart, the origin is a SOURCE. The eigenvalues are 2, 3, and the eigenvectors are $\langle 1, 1 \rangle$ and $\langle 2, 1 \rangle$. The solution is:

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3t} = \begin{bmatrix} c_1 e^{2t} + 2c_2 e^{3t} \\ c_1 e^{2t} + c_2 e^{3t} \end{bmatrix}$$

8. Let the matrix A be:

$$A = \left[\begin{array}{cc} \alpha & 1 \\ -1 & 0 \end{array} \right]$$

where α is any real number. Let $\mathbf{x}' = A\mathbf{x}$, and classify the origin using the Poincare Diagram. For example, if $\alpha = 2$, we get a degenerate source.

We see that: $Tr(A) = \alpha$, det(A) = 1 and $\Delta = \alpha^2 - 4$. In the Poincaré Diagram, this means we are along a horizontal line at det(A) = 1.

If $\alpha > 2$, $\Delta > 0$, and the origin is a SOURCE.

If $\alpha = 2$, $\Delta = 0$, and the origin is a DEGENERATE SOURCE.

If $0 < \alpha < 2$, $\Delta < 0$, and the origin is a SPIRAL SOURCE.

If $\alpha = 0$, Tr(A) = 0, and the origin is a CENTER.

If $-2 < \alpha < 0$, the origin is a SPIRAL SINK.

if $\alpha = -2$, the origin is a DEGENERATE SINK.

If $\alpha < -2$, the origin is a SINK.

9. Convert the following second order D.E.s to a system of first order, and solve using our current technique:

(a) y'' + 64y = 0

Let $x_1 = y$ and $x_2 = y'$. Then:

So Tr(A) = 0, det(A) = 64, $\Delta = -256$. The origin is a CENTER, the eigenvalues are $\pm 8i$. Using 8i, we get: $\langle 1, 8i \rangle$ for the eigenvector. Construct the solution:

$$\mathbf{v}e^{8ti} = \begin{bmatrix} 1\\8i \end{bmatrix} (\cos(8t) + i\sin(8t)) = \begin{bmatrix} \cos(8t) + i\sin(8t)\\ -8\sin(8t) + i8\cos(8t) \end{bmatrix}$$

The general solution is:

$$\mathbf{x}(t) = c_1 \begin{bmatrix} \cos(8t) \\ -8\sin(8t) \end{bmatrix} + c_2 \begin{bmatrix} \sin(8t) \\ 8\cos(8t) \end{bmatrix}$$

In terms of the original problem, $y(t) = x_1(t) = c_1 \cos(8t) + c_2 \sin(8t)$.

(b) y'' + 5y' + 4y = 0

Let $x_1 = y$ and $x_2 = y'$. Then:

So Tr(A) = -5, $\det(A) = 4$, $\Delta = 9$. The origin is a SINK, the eigenvalues are -1, -4 with eigenvectors $\langle -1, 1 \rangle$, $\langle 1, -4 \rangle$. The general solution: The general solution is:

$$\mathbf{x}(t) = c_1 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 1 \\ -4 \end{bmatrix} e^{-4t}$$

In terms of the original problem, $y(t) = x_1(t) = -c_1 e^{-t} + c_2 e^{-4t}$. Note that $x_2(t)$ is the derivative.

(c)
$$y'' - y' - 12y = 0$$

Let $x_1 = y$ and $x_2 = y'$. Then:

So Tr(A) = 1, det(A) = -12, $\Delta = 49$. The origin is a SADDLE, the eigenvalues are 4, -3 with eigenvectors $\langle 1, 4 \rangle$, $\langle 1, -3 \rangle$. The general solution:

$$\mathbf{x}(t) = c_1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} e^{4t} + c_2 \begin{bmatrix} 1 \\ -3 \end{bmatrix} e^{-3t}$$

In terms of the original problem, $y(t) = x_1(t) = c_1 e^{4t} + c_2 e^{-3t}$. Note that $x_2(t)$ is the derivative.