Laplace Transforms Review Solutions

1. Compute transforms from the definition:
 (a) \[
 \int_0^2 3e^{-st} \, dt + \int_2^\infty (6-t)e^{-st} \, dt = \frac{3}{s} - \frac{3}{s}e^{-2s} + e^{-2s}\left(\frac{4}{s^2} - \frac{1}{s^2}\right)
 \]
 (b) \[
 \int_0^5 e^{-t}e^{-st} \, dt - \int_5^\infty e^{-st} \, dt = \frac{1-e^{-5(s+1)}}{s+1} - \frac{e^{-5s}}{s}
 \]

2. (a) \[
 f(t) = 3(1 - u(t-2)) + (6-t)u(t-2) \quad \text{or} \quad 3(u(t) - u(t-2)) + (6-t)u(t-2)
 \]
 For the Laplace Transform, use \(f(t-a)u(t-a)\). If \(f(t-2) = 3\), then \(f(t) = 3\). If \(f(t) = 6-t\), then \(f(t) = 6 - (t+2) = -t + 4\).
 (b) \[
 f(t) = e^{-t}(1 - u(t-5)) - u(t-5)
 \]
 For the Laplace transform, if \(f(t-5) = e^{-t}\), then \(f(t) = e^{-(t+5)} = e^{-5}e^{-t}\)

3. Compute transforms (using the table)
 (a) \[
 \frac{2}{(s+9)^2}
 \]
 (b) \[
 \frac{1}{s^2} - \frac{6}{s^4} - \frac{5}{s^8+25}
 \]
 (c) \[
 e^{-5s} \frac{4}{s^5}
 \]
 (d) \[
 \frac{4}{(s-3)^2 + 16}
 \]
 (e) Use \(e^{at}f(t) \rightarrow F(s-a)\), with \(f(t) = \delta(t-3)\), so \(e^{-3(s-1)}\).
 (f) Let \(f(t-4) = t^2\), so \(f(t) = (t+4)^2\): \[
 e^{-4s}\left(\frac{4}{s^2} + \frac{8}{s^2} + \frac{16}{s}\right)
 \]

4. Invert the transforms:
 (a) First rewrite as \[
 \frac{2s-1}{(s-2)^2+2}, \quad \text{so} \quad 2e^{2t}\cos(\sqrt{2}t) + \frac{3}{\sqrt{2}}e^{2t}\sin(\sqrt{2}t)
 \]
 (b) Via partial fractions: \(e^{-t} - 3e^{-3t} + 3e^{2t}\)
 (c) \[
 \frac{7}{2}e^{-3t}t^2
 \]
 (d) \(u(t-2)[2e^{-2(t-2)} + 2e^{t-2}]\)
 (e) Rewrite to get: \[
 \frac{3}{2} \left(\frac{(s-4)}{(s-3)^2-11} + \frac{10}{3\sqrt{11}(s-3)^2-11}\right), \quad \text{so we get:} \quad \frac{3}{2}e^{4t}\cosh(\sqrt{11}t) + \frac{5}{\sqrt{11}}e^{4t}\sinh(\sqrt{11}t)
 \]
 (f) Write as \(e^{-2s}H(s)\).
 \[
 H(s) = \frac{1}{s^2 + 2s - 2} = \frac{1}{(s+1)^2-3} = F(s+1)
 \]
 \[
 \text{where } F(s) = 1/(s^2 - 3). \text{ This gives } f(t) = 1/\sqrt{3}\sinh(\sqrt{3}t). \text{ Final answer:}
 \]
 \[
 u(t-2) \cdot \frac{1}{\sqrt{3}}e^{-(t-2)}\sinh(\sqrt{3}(t-2))
 \]

5. Solve the diff. eqn:
 (a) \(e^{2t} - e^{5t}\)
 (b) \(-3e^{-3t} + te^{-3t}\)
(c) You might first write:

\[Y = \frac{s^3 + 4s + 2}{s^3(s^2 + 2s + 2)} = \frac{3}{2} \frac{1}{s} + \frac{1}{s^2} + \frac{1}{2} \frac{3}{s^2 + 2s + 2} \]

\[-\frac{3}{2} + t + \frac{1}{2} t^2 - \frac{1}{2} e^{-t} \sin(t) + \frac{3}{2} e^{-t} \cos(t) \]

(d) \[\frac{10}{13} e^{2t} - \frac{23}{13} \cos(3t) + \frac{15}{13} \sin(3t) \]

(e) Let \(h(t) = \frac{1}{3} + \frac{1}{12} e^{3t} + \frac{1}{4} e^{-t} \) Then the solution is: \(y(t) = u(t-1)h(t-1) - \frac{1}{4} e^{3t} + \frac{1}{4} e^{-t}. \)

(f) We need to invert \(\frac{2}{(s-1)(s-2)^2} = \frac{6}{s-1} + \frac{4}{(s-1)^2} + \frac{2}{(s-1)^3} - \frac{6}{s-2} + \frac{2}{(s-2)^2}, \) which is \(e^{2t}(2t - 6) + e^t(t^2 + 4t + 6) \)

(g) \(\frac{1}{2} \sin(2t) + \frac{1}{2} u(t - \pi/2) \sin(2(t - \frac{\pi}{2})) \)

(h) \(y(t) = \sum_{k=1}^{\infty} u_{2\pi k}(t) \sin(t) \) Note that this is:

\[
y(t) = \begin{cases}
\sin(t), & 0 \leq t < 2\pi \\
2\sin(t), & 2\pi \leq t < 4\pi \\
3\sin(t), & 4\pi \leq t < 6\pi \\
\vdots & \vdots
\end{cases}
\]

6. Evaluate: \(\int_0^\infty \sin(3t) \delta(t - \frac{\pi}{2}) \, dt \)

We know that \(\int_{-\infty}^{\infty} \delta(t - c)f(t) \, dt = f(c). \) Therefore, for \(c > 0, \)

\[
\int_0^\infty \sin(3t) \delta(t - \pi/2) \, dt = \sin \left(\frac{3\pi}{2} \right) = -1
\]

7. \(\mathcal{L}(t \sin(t)) = \frac{1}{s^2} \cdot \frac{1}{s^2 + 1} = \frac{1}{s^2} - \frac{1}{s^2 + 1} \) and the inverse laplace of that is \(t - \sin(t). \)

8. Use the table to find an expression for \(\mathcal{L}(ty'). \) Use this to solve:

\(y'' + 3ty' - 6y = 1, \quad y(0) = 0, \quad y'(0) = 0 \)

From the table, \(\mathcal{L}(ty') = -Y(s) - sY'(s). \) Take the Laplace transform, and:

\[
s^2Y(S) + 3(-Y - sY') - 6Y = \frac{1}{s}
\]

\[
\Rightarrow Y' + \left(\frac{s^2 - 9}{-3s} \right) Y = -\frac{1}{3s}
\]

Use the method of the integrating factor:

\[
\int \frac{s^2 - 9}{-3s} \, ds = \int \frac{-1}{3} s + \frac{3}{s} \, ds = -\frac{1}{6} s^2 + 3 \ln(s)
\]

Now the integrating factor is \(e^{(-1/6)s^2 + \ln(s^3)} = s^3 e^{(-1/6)s^2}. \)

\[
(s^3 e^{(-1/6)s^2} Y)' = \frac{1}{3s} s^3 e^{(-1/6)s^2} = \frac{1}{3} s e^{(-1/6)s^2}
\]

so that

\[
s^3 e^{(-1/6)s^2} Y = e^{(-1/6)s^2} \Rightarrow Y(s) = \frac{1}{s^3}
\]

Therefore, \(y(t) = \frac{1}{2} t^2. \)
9. Characterize all solutions: We solve by our old method of getting the homogeneous and particular solutions.

\[y(t) = \begin{cases}
\cos(2t) + \frac{1}{2} \sin(2t), & 0 \leq t < 1 \\
c_1 \cos(2t) + c_2 \sin(2t) + \frac{1}{4}, & t \geq 1
\end{cases} \]

10. Define the delta function:

\[\delta(t - c) = \lim_{h \to 0} d_h(t - c) \]

where

\[d_h(t - c) = \begin{cases}
\frac{1}{2h}, & c - h < t < c + h \\
0, & \text{otherwise}
\end{cases} \]

11. If \(y'(t) = \delta(t - c) \), what is \(y(t) \)?

\[sY = e^{-cs} \to Y = \frac{e^{-cs}}{s} \to y(t) = u(t - c) \]

13. The following system of D.E.s describes the interaction of a population of predators with a population of prey. (a) Which is the predator, and which is the prey (and why)? (b) Find all the equilibrium solutions.

\[\begin{align*}
\dot{x} &= x(-1 + 3y) \\
\dot{y} &= y(0.4 - 2x)
\end{align*} \]

The prey is \(y \), predators are \(x \) (Note that in the absence of the other, \(x \) decreases but \(y \) increases). The equilibria are where the two derivatives are equal to zero (at the same time). This is where \(x = 0, y = 0 \) or \(x = 1/5, y = 1/3 \).

For the spring/mass equations below, the force of gravity is 32 ft/sec^2.

14. A 4-foot spring measures 8 feet long after a mass weighing 8 lbs. is attached to it. The medium through which the mass moves offers a damping force equivalent to \(\sqrt{2} \) times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 5 ft/sec.

For \(mx'' + \gamma x' + kx = 0 \), we have that \(m = \frac{8}{32}, k = 2 \) (from \(mg = kL \Rightarrow 8 = k \cdot 4 \) and \(\gamma = \sqrt{2} \)). The D.E. is then:

\[\frac{1}{4} x'' + \sqrt{2} x' + 2x = 0, x(0) = 0, x'(0) = 5 \]

and the solution is \(x(t) = 5te^{-\sqrt{2}t} \).

15. Let \(mx'' + \gamma x' + kx = F_0 \cos(\omega t) \) be our mass/spring model. (i) What are the conditions on \(m, \gamma, k \) and \(\omega \) so that the system is resonant? (ii) True or False, and give explicit (mathematical) reasons why: If there is resistance, then the homogeneous part of the solution will tend to zero. (This was also called the transient part of the solution)
(i) For resonance, $\gamma = 0$ and $k = \sqrt{\omega}$. (ii) If $\gamma > 0$, we considered $x'' + 2\lambda x' + \omega^2 x$ (different ω), and looked at the homogeneous solutions. The solutions to the characteristic equation were $-\lambda \pm \sqrt{\lambda^2 - \omega^2}$. This gives solutions in which $e^{-\lambda t}$ can be factored out front, which will cause the solutions to die off as $t \to \infty$.

16. Assume no damping, and that a mass weighing two pounds stretches a spring 6 inches. The mass is released from equilibrium with an upward velocity of 1 ft/sec. (a) Write the equation of motion, and solve. (b) Suppose we hit the mass with a hammer at time $a > 0$ (use $\delta(t-a)$). Model this and re-solve using Laplace transforms. (Optional: Find a time a so that when we hit the mass with the hammer, it stops all motion).

For part (a) and the spring constant, convert 6 inches to 0.5 feet to get: $x'' + 64x = 0$, $x(0) = 0$, $x'(0) = -1$. From this, $x(t) = -\frac{1}{8} \sin(8t)$.

If we hit the spring with a hammer, $x'' + 64x = \delta(t-a) \Rightarrow x(t) = -\frac{1}{8} \sin(8t) + \frac{1}{8} U(t-a) \sin(8(t-a))$

For what time(s) a does $\sin(8(t-a)) = \sin(8t)$? The period of $\sin(8t)$ is $\pi/4$, so if we shift by any multiple of that, it would work. So, $a = n \cdot \frac{\pi}{4}$.

17. Let x, y, z be three populations of animals with the following properties:

(a) In the absence of y, z, the population of x grows exponentially.
(b) In the absence of x, z, the population of y follows logistic growth.
(c) In the absence of x, y, the population z declines exponentially.
(d) Populations x, y compete for the same resources, so each of their populations will decrease in proportion to the number of interactions between them.
(e) Populations x, y are food for the predator z, so each of their populations will decrease in proportion to the number of interactions between them (assume only $x - z$ and $x - y$ interactions). Also, the population of z will increase in proportion to the number of the interactions (again, consider only $x - z$ and $x - y$).

Build a system of differential equations that will model how the populations x, y, z will change over time. (Do not solve the system)

\[
\begin{align*}
\dot{x} &= k_1 x - k_5 xy - k_7 xz \\
\dot{y} &= y(k_2 + k_3 y) - k_6 xy - k_8 yz \\
\dot{z} &= -k_4 z + k_9 xz + k_{10} yz
\end{align*}
\]

18. Epidemic Models of the Onset of Social Activities (EMOSA). Epidemic models have been used to model different sorts of social activity. In this question, we develop a model used for the transition from “virgin” to “nonvirgin”\(^1\). Let P_m, P_f be the proportion of “nonvirgins” males, females (respectively) in a given heterosexual population (so that $1 - P_m$, $1 - P_f$ are the proportions of “virgins”). The model assumes the following:

(a) The proportion of nonvirgin males changes at a rate proportional to the number of virgin-virgin interactions, and proportional to the number of virgin male - nonvirgin female interactions.

(b) Similarly, the proportion of nonvirgin females changes at a rate proportional to the number of virgin-virgin interactions and proportional to the number of virgin female - nonvirgin male interactions.

(i) Build the model that follows from these assumptions. (ii) Determine the equilibrium solutions.

(Side remark: Its interesting to consider how models of disease might be modified to explain social behaviors such as the ones considered here. These questions are very current in sociology and psychology.)

\[
\begin{align*}
P'_m &= k_1(1 - P_m)(1 - P_f) + k_2(1 - P_m)P_f = (1 - P_m)[k_1(1 - P_f) + k_2P_f] \\
P'_f &= k_3(1 - P_m)(1 - P_f) + k_4(1 - P_f)P_m = (1 - P_f)[k_3(1 - P_m) + k_4P_m]
\end{align*}
\]

The equilibria are at \((1, 1)\) and

\[
\left(\frac{k_1}{k_1 - k_2}, \frac{k_3}{k_3 - k_4} \right)
\]