Practice Sheet:

Solving a system of two equations

Occasionally, it will be very convenient to be able to quickly solve two linear equations in two unknowns. For example, solve for C_1, C_2 :

$$aC_1 + bC_2 = e$$
$$cC_1 + dC_2 = f$$

A very fast method is known as Cramer's Rule. To use Cramer's rule, we first recall the definition of the determinant (as seen in both Calc III and Linear Algebra):

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

Example: Compute the determinant: $\begin{vmatrix} 3 & 1 \\ -2 & 2 \end{vmatrix}$. Solution: (3)(2) - (-2)(1) = 6 + 2 = 8.

Cramer's Rule:

The solution to the system of equations:

$$aC_1 + bC_2 = e$$
$$cC_1 + dC_2 = f$$

is
$$C_1 = \frac{\begin{vmatrix} e & b \\ f & d \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{ed - bf}{ad - bc}$$
 $C_2 = \frac{\begin{vmatrix} a & e \\ c & f \end{vmatrix}}{\begin{vmatrix} a & b \\ c & d \end{vmatrix}} = \frac{af - ce}{ad - bc}$, provided $ad - bc \neq 0$.

Example: Solve the system:

$$3C_1 + 2C_2 = 4$$

 $C_1 - 3C_2 = 2$

The solution is:

$$C_{1} = \frac{\begin{vmatrix} 4 & 2 \\ 2 & -3 \end{vmatrix}}{\begin{vmatrix} 3 & 2 \\ 1 & -3 \end{vmatrix}} = \frac{-12 - 4}{-9 - 2} = \frac{16}{11} \qquad C_{2} = \frac{\begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix}}{\begin{vmatrix} 3 & 2 \\ 1 & -3 \end{vmatrix}} = \frac{6 - 4}{-9 - 2} = -\frac{2}{11}$$

And we can check the computation:

$$3 \cdot \frac{16}{11} + 2 \cdot \frac{-2}{11} = \frac{44}{11} = 4$$
 and $\frac{16}{11} - 3 \cdot \frac{-2}{11} = \frac{22}{11} = 2$

Nice! We can immediately compute the solution, no matter how messy the fractions are!

Some special cases: If the denominator is zero, we might have no solution, or an infinite number of solutions:

• Consider the system:

$$C_1 + C_2 = 1$$

 $3C_1 + 3C_2 = 3$

We see that the second equation is just a constant multiple of the first. There are an infinite number of solutions of the form: $C_1 + C_2 = 1$.

• Consider almost the same system:

$$C_1 + C_2 = 1 3C_1 + 3C_2 = 1$$

We can think of these as parallel lines in the $C_1 - C_2$ plane- There is no solution to this system.

Practice Problems:

Solve the following systems:

1.
$$C_1 + C_2 = 2$$
$$-2C_1 - 3C_2 = 3$$

2. Try this one in abstract form: $\begin{array}{cc} C_1+C_2 &= y_0 \\ r_1C_1+r_2C_2 &= v_0 \end{array}$

$$3. \quad \begin{array}{cc} C_1 + C_2 &= 2\\ 3C_1 + C_2 &= 1 \end{array}$$

4.
$$2C_1 - 5C2 = 3$$
$$6C_1 - 15C_2 = 10$$

5.
$$2x - 3y = -1$$

 $3x - 2y = 1$